Файлы
Обратная связь
Для правообладателей
Найти
Анищенко В.С. Нелинейные эффекты в хаотических и стохастических системах
Файлы
Академическая и специальная литература
Математика
Нелинейная динамика
Назад
Скачать
Подождите немного. Документ загружается.
θ
=
ω
1
/
h
ω
i
θ
=
1
ω
1
θ
θ
θ
θ
θ
θ
=
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
ω
0.0
0.1
0.2
0.3
0.4
0.5
a
1:1
3:1
5:1
1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
δ
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
θ
0.26
0.31
0.36
0.41
0.2
0.3
0.4
0.5
δ
ϕ
n
+1
=
ϕ
n
+
f
(
ϕ
n
)
,
f
(
ϕ
n
)
≡
f
(
ϕ
n
+
2
π
k
)
.
ϕ
n
→
∞
x
k
+1
=
x
k
+
δ
−
K
2
π
sin
(2
π
x
k
)
,
mo
d 1
.
δ
K
=
0
δ
n
n
=
1
,
2
,
.
.
.
θ
θ
=
lim
k
→∞
x
k
−
x
0
k
,
δ
mo
d
1
θ
=
θ
1
=
θ
2
=
θ
=
r
+
p
s
+
q
θ
(
δ
)
(
K,
δ
)
0.5
1.0
1.5
2.0
2.5
3.0
p
0.0
0.1
0.2
0.3
0.4
0.5
γ
2:1
3:1
1:1
p
=
ω
02
/ω
01
ε
= 2
.
0
ω
01
ω
02
¨
x
1
−
ε
(1
−
x
2
1
)
˙
x
1
+
ω
2
01
x
1
=
γ
(
x
2
−
x
1
)
,
¨
x
2
−
ε
(1
−
x
2
2
)
˙
x
2
+
ω
2
02
x
2
=
γ
(
x
1
−
x
2
)
,
γ
θ
=
m
:
n
ω
1
/ω
2
=
m
:
n
ϕ
(
t
)
=
Φ
1
(
t
)
−
Φ
2
(
t
)
˙
ϕ
=
0
,
ϕ
=
const
x
(
t
)
˙
x
(
t
)
ξ
(
t
)
A
(
t
)
Φ
(
t
)
ω
(
t
) =
˙
Φ
(
t
)
p
(
A,
Φ,
t
|
A
1
,
Φ
1
,
t
1
)
A
Φ
t
>
t
1
t
0
A
=
A
1
Φ
=
Φ
1
Φ
(
t
)
ϕ
(
t
) =
Φ
(
t
)
−
ω
1
t
U
(
ϕ
)
ϕ
(
t
)
¨
x
−
ε
(1
−
x
2
)
˙
x
+
ω
2
0
x
=
a
cos
(
ω
1
t
)
+
p
2
D
0
ξ
(
t
)
,
ξ
(
t
)
δ
h
ξ
(
t
)
i
≡
0;
h
ξ
(
t
)
ξ
(
t
+
τ
)
i
=
δ
(
τ
)
D
0
A
(
t
)
ϕ
(
t
)
˙
A
=
ε
A
2
1
−
A
2
A
2
0
−
µ
sin
ϕ
+
D
A
+
√
2
D
ξ
1
(
t
)
,
˙
ϕ
=
∆
−
µ
A
cos
ϕ
+
√
2
D
A
ξ
2
(
t
)
,
ϕ
µ
=
a/
2
ω
1
D
=
D
0
/
2
ω
2
1
ξ
1
ξ
2
δ
h
ξ
1
,
2
(
t
)
i
≡
0
,
h
ξ
1
,
2
(
t
)
ξ
1
,
2
(
t
+
τ
)
i
=
δ
(
τ
)
D
ξ
1
ξ
2
a
ε,
D
ε
A
0
A
(
t
)
A
0
˙
ϕ
=
∆
−
∆
c
cos
ϕ
+
√
2
D
A
0
ξ
2
(
t
)
,
∆
c
=
µ/
A
0
ϕ
U
(
ϕ
)
=
−
∆
·
ϕ
−
∆
c
sinϕ
∆
<
∆
c
ϕ
k
=
arccos
(
∆/
∆
c
)
+
2
π
k
U
(
ϕ
)
ϕ
(
t
)
ϕ
k
2
π
D
D
=
0
.
02
ϕ
D
=
0
.
07
ϕ
∼
=
const
∆
=
0
.
06
µ
=
0
.
15
A
0
= 1
ϕ
ϕ
(
t
)
D
= 0
.
07
D
= 0
.
22
∂
p
(
ϕ,
t
)
∂
t
=
−
∂
∂
ϕ
(
∆
−
∆
s
cos
ϕ
)
p
(
ϕ,
t
)
−
Q
∂
p
(
ϕ,
t
)
∂
ϕ
,
Q
=
D
/
A
2
0
ϕ
ϕ
P
(
ϕ,
t
)
[
−
π
,
π
]
P
(
ϕ,
t
)
=
∞
X
n
=
−∞
p
(
ϕ
+
2
π
n,
t
)
.
P
(
ϕ,
t
)
P
st
(
ϕ
)
P
(
−
π
,
t
)
=
P
(
π
,
t
)
R
π
−
π
P
(
ϕ,
t
)d
ϕ
=
1
P
st
(
ϕ
)
=
N
exp
∆
·
ϕ
−
∆
s
sin
ϕ
Q
Z
ϕ
+2
π
ϕ
exp
−
∆
·
ψ
−
∆
s
sin
ψ
Q
d
ψ
,
−
π
≤
ϕ
≤
π
,
N
∆
=
0
P
st
(
ϕ
)
=
1
2
π
I
0
(
∆
s
/Q
)
exp
∆
s
Q
cos(
ϕ
+
π
/
2)
,
−
π
≤
ϕ
≤
π
,
I
0
(
z
)
I
0
(
∆
s
/Q
)
≈
1
exp
[(
∆
s
/Q
)
cos
(
ϕ
+
π
/
2))]
≈
1
P
st
(
ϕ
)
=
1
/
2
π
cos(
ϕ
+
π
/
2)
≈
1
−
(
ϕ
+
π/
2)
2
/
2
I
0
(
∆
s
/Q
)
≈
exp
(
∆
s
/Q
)
/
p
2
π
∆
s
/Q
P
st
(
ϕ
)
=
exp
(
−
∆
s
(
ϕ
+
π
/
2)
2
/
2
Q
)
/
p
2
π
∆
s
/Q
ϕ
0
=
−
π
/
2
Q
→
0
δ
lim
Q
→
0
P
st
(
ϕ
)
=
δ
(
ϕ
+
π
/
2)
P
st
(
ϕ
)
h
ω
i
h
ω
i
=
h
˙
ϕ
i
+
ω
1
=
Z
π
−
π
(
∆
−
∆
s
cos
ϕ
)
P
st
(
ϕ
)d
ϕ
+
ω
1
,
ω
1
ϕ
0
p
(
ϕ,
t
=
0) =
δ
(
ϕ
−
ϕ
0
)
h
ϕ
2
(
t
=
0)
i
=
0
h
ϕ
2
(
t
)
i
∝
D
eff
·
t
D
eff
D
eff
=
1
2
d
d
t
h
ϕ
2
(
t
)
i
−
h
ϕ
(
t
)
i
2
.
D
eff
=
0
U
(
ϕ
)
D
eff
=
p
∆
2
s
−
∆
2
2
π
1
+
exp
−
2
π
∆
Q
×
exp
−
2
Q
p
∆
2
s
−
∆
2
∆
·
arcsin
∆
∆
s
.
2
π
Φ
(
t
)
Φ
(
t
)
h
ω
i
=
lim
T
→∞
1
T
Z
t
0
+
T
t
0
d
Φ
(
t
)
d
t
d
t
=
lim
T
→∞
1
T
(
Φ
(
t
0
+
T
)
−
Φ
(
t
0
))
,
D
eff
=
1
2
d
d
t
h
ϕ
2
(
t
)
i
−
h
ϕ
(
t
)
i
2
,
ϕ
(
t
)
=
Φ
(
t
)
−
Ψ
(
t
)
Ψ
(
t
)
x
(
t
)
w
(
t
)
w
(
t
)
=
x
(
t
)
+
i
y
(
t
)
=
A
(
t
)
e
i
Φ
(
t
)
.
A
(
t
)
=
p
x
2
(
t
)
+
y
2
(
t
)
,
Φ
(
t
)
=
arctan
y
x
+
π
k
,
k
=
0
,
±
1
,
.
.
.
ω
(
t
)
=
d
d
t
Φ
(
t
)
=
1
A
2
(
t
)
[
x
(
t
)
˙
y
(
t
)
−
y
(
t
)
˙
x
(
t
)]
.
y
(
t
)
x
(
t
)
y
(
t
)
‹
1
2
...
11
12
13
14
15
16
17
...
53
54
›