Sunden CH008.tex 10/9/2010 15: 19 Page 328
328 Computational Fluid Dynamics and Heat Transfer
[5] Rogers, M. M., Mansour, N. N., and Reynolds, W. C. An algebraic model for the
turbulent flux of a passive scalar, J. Fluid Mech., 203, pp. 77–101, 1989.
[6] Kim, J., Moin, P., and Moser, R.Turbulence statistics in fully developed channel flow
at low Reynolds number, J. Fluid Mech., 177, pp. 133–166, 1987.
[7] Moser, R. D., Kim, J., and Mansour, N. N. Direct numerical simulation of turbulent
channel flow up to Re
τ
=590, Phys. Fluids, 11, pp. 943–945, 1999.
[8] Spalart, P. R. Direct simulation of a turbulent boundary layer up to R
θ
=1410, J. Fluid
Mech., 187, pp. 61–98, 1988.
[9] Spalart P. R., and Watmuff, J. H. Experimental and numerical study of a turbulent
boundary layer with pressure gradients, J. Fluid Mech., 249, pp. 337–371, 1993.
[10] Le,J.-H.,andSung,H.J.Effectsofanadversepressureg radientonaturbulentboundary
layer, Int. J. Heat Fluid Flow, 29, pp. 568–578, 2008.
[11] Le, H., Moin, P., and Kim, J. Direct numerical simulation of turbulent flow over a
backward-facing step, J. Fluid Mech., 330, pp. 349–374, 1997.
[12] Choi, H., Moin, P., and Kim, J. Direct numerical simulation of turbulent flow over
riblets, J. Fluid Mech., 255, pp. 503–539, 1993.
[13] Nagano,Y., Hattori, H., and Houra,T. DNS of velocity and thermal fields in turbulent
channel flow with transverse-rib roughness, Int. J. Heat Fluid Flow, 25, pp. 393–403,
2004.
[14] Kristoffersen, R., and Andersson, H. I. Direct simulations of low-reynolds-number
turbulent flow in a rotating channel, J. Fluid Mech., 256, pp. 163–195, 1993.
[15] Oberlack, M., Cabot, W., and Rogers, M. M.Turbulent channel flow with streamwise
rotation: lie group analysis, DNS and modeling, Proc. 1st Int. Symp. on Turbulence
and Shear Flow Phenomena, pp. 85–90, 1999.
[16] Nagano,Y.,andHattori,H.DNSandmodellingofspanwiserotatingchannelflowwith
heat transfer, J.Turbulence, 4-010, pp. 1–15, 2003.
[17] Wu, H., and Kasagi, N. Effects of arbitrary directional system rotation on turbulent
channel flow, Phys. Fluids, 16, pp. 979–990, 2004.
[18] Hattori, H., Ohiwa, N., and Nagano, Y., Nonlinear eddy diffusivity model for wall-
bounded flow with arbitrary rotating axes, Int. J. Heat Fluid Flow, 27, pp. 838–851,
2006.
[19] Huser, A., and Biringen, S. Direct numerical simulation of turbulent flow in a square
duct, J. Fluid Mech., 257, pp. 65–95, 1993.
[20] Sumitani, Y., and Kasagi, N. Direct numerical simulationof turbulent transport with
uniform wall injection and suction,AIAA J., 33, pp. 1220–1228, 1995.
[21] Iida, O., and Kasagi, N. Direct numerical simulation of unstably stratified turbulent
channel flow,Trans. ASME, J. Heat Transfer, 119, pp. 53–61, 1997.
[22] Hattori, H., and Nagano, Y. Direct numerical simulation of turbulent heat transfer in
plane impinging jet, Int. J. Heat Fluid Flow, 25, pp. 749–758, 2004.
[23] Hattori, H., Houra, T., and Nagano, Y. Direct numerical simulation of stable and
unstable turbulent thermal boundary layers, J. Heat Fluid Flow, 28, pp. 1262–1271,
2007.
[24] Hattori, H., Morita, A., and Nagano, Y. Nonlinear eddy diffusivity models reflecting
buoyancy effect for wall shear flows and heat transfer, Int. J. Heat Fluid Flow, 27, pp.
671–683, 2006.
[25] Speziale,C.G.,Sarkar,S.,andGatski,T.B.Modellingthepressure-straincorrelationof
turbulence: an invariant dynamics systemapproach,J. Fluid Mech.,227, pp. 245–272,
1997.