Domain wall engineering in piezoelectric crystals 303
20. Wada S, Suzuki S, Noma T, Suzuki T, Osada M, Kakihana M, Park E-E, Cross L E,
Shrout T R (1999), ‘Enhanced piezoelectric property of barium titanate single crystals
with engineered domain configurations’, Jpn. J. Appl. Phys. 38, 5505–5511.
21. Park S-E, Wada S, Cross L E, Shrout T R (1999), ‘Crystallographically engineered
BaTiO
3
single crystals for high-performance piezoelectrics’, J. Appl. Phys. 86, 2746–
2750.
22. Wada S, Tsurumi T (2001), ‘Domain configurations of ferroelectric single crystals
and their piezoelectric properties’, Trans. Mater. Res. Soc. Jpn. 26, 11–14.
23. Matthias B T (1949), ‘New ferroelectric crystals’, Phys. Rev. 75, 1771.
24. Fousek J (1971), ‘Permissible domain walls in ferroelectric species’, Czech. J. Phys.
B21, 955–968.
25. Wahlstrom E E (1979), Optical Crystallography, New York, John Wiley and Sons.
26. Wada S, Yako K, Kiguchi T, Kakemoto H, Tsurumi T (2005), ‘Enhanced piezoelectric
properties of barium titanate single crystals with the different engineered domain
sizes’, J. Appl. Phys. 98, 014109.
27. IEEE Standard on Piezoelectricity, American National Standard Institute (1976).
28. Fousek J, Litvin D B, Cross L E (2003), ‘Domain geometry engineering and domain
average engineering of ferroics’, J. Phys.: Condens. Matter. 13, L33–L38.
29. Fousek J, Cross L E (2003), ‘Open issues in application aspects of domains in ferroic
materials’, Ferroelectrics 293, 43–60.
30. Liu S-F, Park S-E, Cross L E, Shrout T R (1999), ‘E-field dependence of piezoelectric
properties of rhombohedral PZN–PT single crystal’, Ferroelectrics 221, 169–174.
31. Damjanovic D (1998), ‘Ferroelectric, dielectric and piezoelectric properties of
ferroelectric thin films and ceramics’, Rep. Prog. Phys. 61, 1267.
32. Ishibashi Y, Salje E (2002), ‘A theory of ferroelectric 90 degree domain wall’, J.
Phys. Soc. Jpn. 71, 2800–2803.
33. Setter N (2002), Piezoelectric Materials in Devices, Lausanne, ed. N. Setter, p. 1.
34. Meyer B, Vanderbilt D (2002), ‘Ab Initio study of ferroelectric domain walls in
PbTiO
3
’, Phys. Rev. B 65, 104111.
35. Budimir M, Damjanovic D, Setter N (2003), ‘Piezoelectric anisotropy-phase transition
relations in perovskite single crystals’, J. Appl. Phys. 94, 6753–6761.
36. Chaib H, Schlaphof F, Otto T, Eng L M (2003), ‘Electric and optical properties of the
90° ferroelectric domain wall in tetragonal barium titanate’, J. Phys.: Condens.
Matter. 15, 1–14.
37. Shilo D, Ravichandran G, Bhattacharya K (2004), ‘Investigation of twin-wall structure
at the nanometer scale using atomic force microscopy’, Nature Mater. 3, 453–457.
38. Tsuji T, Ogiso H, Akedo J, Saito S, Fukuda K, Yamanaka K (2004), ‘Evaluation of
domain boundary of piezo/ferroelectric material by ultrasonic atomic force microscopy’,
Jpn. J. Appl. Phys. 43, 2907–2913.
39. Ishibashi Y (2004), private communication.
40. Park S-E, Shrout T R (1997), ‘Characteristics of relaxor-based piezoelectric single
crystals for ultrasonic transducers’, IEEE Trans. Ultrason., Ferroelectr. & Freq.
Control. 44, 1140.
41. Urenski P, Lesnykh M, Rosenwaks Y, Rosenman G, Molotskii M (2003), J. Appl.
Phys. 90, 1950.
42. Wada S, Yako K, Yokoo K, Kakemoto H, Tsurumi T (2006), ‘Domain wall engineering
in barium titanate single crystals for enhanced piezoelectric properties’, Ferroelectrics
334, 1, 17–27.
43. Arlt G, Hennings D, de With G (1985), ‘Dielectric properties of fine-grained barium
titanate ceramics’, J. Appl. Phys. 58, 1619–1625.