246 Chapter 9 Applications of carbon nanotubes
[19] G. Binnig, H. Rohrer, C. Gerber and E. Weibel, Surface studies by scanning tunneling
microscopy. Phys. Rev. Lett., 49 (1982) 57.
[20] N. R. Wilson and J. V. Macpherson, Carbon nanotube tips for atomic force microscopy.
Nat. Nanotechnol., 4 (2009) 483–91.
[21] H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert and R. E. Smalley, Nanotubes as
nanoprobes in scanning probe microscopy. Nature, 384 (1996) 147–50.
[22] C. V. Nguyen, K.-J. Chao, R. M. D. Stevens, L. Delzeit, A. Cassell, J. Han and
M. Meyyappan, Carbon nanotube tip probes: stability and lateral resolution in
scanning probe microscopy and application to surface science in semiconductors.
Nanotechnology, 12 (2001) 363–67.
[23] M. Valcarcel, S. Cardenas and B. M. Simonet, Role of carbon nanotubes in analytical
science. Anal. Chem., 79 (2007) 4788–97.
[24] S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung and C. M. Lieber, Covalently
functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature,
394 (1998) 52–5.
[25] A. Patil, J. Sippel, G. W. Martin and A. G. Rinzler, Enhanced functionality of
nanotube atomic force microscopy tips by polymer coating. Nano. Lett., 4 (2004)
303–8.
[26] C. Stampfer, T. Helbling, D. Obergfell, B. Schoberle, M. K. Tripp,A. Jungen, S. Roth,
V. M. Bright and C. Hierold, Fabrication of single-walled carbon-nanotube-based
pressure sensors. Nano. Lett., 6 (2006) 233–7.
[27] P. Kim and C. M. Lieber, Nanotube Nanotweezers. Science, 286 (1999) 2148–50.
[28] A. B. Kaul, E. W. Wong, L. Epp and B. D. Hunt, Electromechanical carbon nanotube
switches for high-frequency applications. Nano. Lett., 6 (2006) 942–7.
[29] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C.-L. Cheung and C. M. Lieber,
Carbon nanotube-based nonvolatile random access memory for molecular computing.
Science, 289 (2000) 94–7.
[30] V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T.A.Arias and P. L. McEuen,Atunable
carbon nanotube electromechanical oscillator. Nature, 431 (2004) 284–7.
[31] K. Jensen, J. Weldon, H. Garcia and A. Zettl, Nanotube Radio. Nano. Lett., 7 (2007)
3508–11.
[32] K. Jensen, K. Kim and A. Zettl, An atomic-resolution nanomechanical mass sensor.
Nat. Nanotechnol., 3 (2008) 533–7.
[33] W. A. de Heer, A. Châtelain and D. Ugarte, A Carbon Nanotube Field-Emission
Electron Source. Science, 270 (1995) 1179–80.
[34] A. G. Rinzler, J. H. Hafner, P. Nikolaev, P. Nordlander, D. T. Colbert, R. E. Smalley,
L. Lou, S. G. Kim and D. Tomanek, Unraveling nanotubes: field emission from an
atomic wire. Science, 269 (1995) 1550–3.
[35] N. de Jonge, Y. Lamy, K. Schoots and T. H. Oosterkamp, High brightness electron
beam from a multi-walled carbon nanotube. Nature, 420 (2002) pp. 393–5.
[36] W. B. Choi, D. S. Chung, J. H. Kang, H.Y. Kim,Y.W.Jin, I.T. Han,Y. H. Lee, J. E. Jung,
N. S. Lee, G. S. Park and J. M. Kim, Fully sealed, high-brightness carbon-nanotube
field-emission display. Appl. Phys. Lett., 75 (1999) 3129–31.
[37] G. Z. Yue, Q. Qiu, B. Gao, Y. Cheng, J. Zhang, H. Shimoda, S. Chang, J. P. Lu and
O. Zhou, Generation of continuous and pulsed diagnostic imaging x-ray radiation
using a carbon-nanotube-based field-emission cathode. Appl. Phys. Lett., 81 (2002)
355–7.