46-4 Industrial Communication Systems
device.(F-Device)..Implementation.of.the.error-detection.mechanism.as.separate.rmware.layers.in.the.
communicating.devices.allowed.these.constraints.to.be.met.
46.2.1 Error-Detection requirements
e.requirement.for.being.able.to.designate.a.system.as.capable.of.operating.at.SIL.3.is.that.the.system.
must.exhibit.a.failure.rate.less.than.10
−7
/h..is.failure.rate.is.for.the.entire.system..However,.a.system.is.
made.up.of.several.components.and.it.must.be.determined.what.each.component.is.allowed.to.contrib-
ute
.to.the.overall.system.failure.rate..ere.were.no.precedents.for.safety.systems.involving.digital.com-
munication
.systems..e.IEC.61508.species.the.contributions.to.the.overall.system.failure.rate.as.35%.
for.sensors,.15%.for.logic.controllers,.and.50%.for.actuators..erefore,.the.Working.Group.developing.
the.Prosafe.specications.chose.a.maximum.of.a.1%.contribution.allowed.for.Prosafe..is.percent-
age
.contribution.was.deducted.from.the.contribution.of.the.logic.controller.and.is.now.specied.in.IEC.
61784-3..As.one.can.see.in.Figure.46.4,.this.results.in.a.required.failure.rate.for.the.Prosafe.contribution.
of.only.10
−9
/h.(10
−2
.×.10
−7
).
46.2.2 Error types and Safeguards
Various.errors.can.occur.when.messages.are.transmitted,.whether.due.to.hardware.failures,.extraor-
dinary
.electromagnetic.interference,.or.other.inuences..A.message.can.be.lost,.occur.repeatedly,.be.
inserted.from.somewhere.else,.appear.delayed.or.in.an.incorrect.sequence,.and/or.show.corrupted.data..
In.the.case.of.safety.communication,.there.may.also.be.incorrect.addressing—a.standard.message.erro-
neously
.appears.at.an.F-Device.and.pretends.to.be.a.safety.message..Dierent.transmission.rates.may.
additionally.cause.storage.eects.to.occur..Of.the.numerous.error.types.and.safeguards.known.from.
literature,.Prosafe.concentrates.on.those.shown.in.Figure.46.5.
Although
.it.can.be.detected.by.use.of.the.consecutive.number.technique,.an.additional.error.type.
was.identied.for.Pronet.communication—that.of.the.failure.of.revolving.memory.in.switches..Since.
there.is.little.control.of.what.Ethernet.switches.a.customer.actually.uses,.some.COTS.(commercial,.o-
the-shelf)
.switches.may.be.unreliable.and.lead.to.revolving.memory.failures.as.shown.in.Figure.46.6..
Accidental.“jumping”.of.the.send.pointer,.for.example,.can.cause.emptying/sending.of.the.entire.queue.
of.messages.
46.2.3 Cyclic/acyclic Communication
Cyclic.data.exchange.between.a.controller.and.its.eld.devices.utilizes.a.one-to-one.communication.
relationship.as.shown.in.Figure.46.7..is.gure.illustrates.that.a.controller.(F-Host).can.operate.any.
mix.of.standard.and.safety.devices.(F-Devices).connected.to.the.same.network..Safety.tasks.and.
Sensor
Logic operations
Actuator
Bin. O
50%
1%
14%
1%
Safety integrity level (SIL) 3: 10
–7
/h
(PROFIsafe-Portion: 1% = 10
–9
/h)
SIL3
35%
Bin. I
Anal. I
FIGURE 46.4 Prosafe.contribution.to.system.failure.rate..(Adapted.from.Specication.PROFIsafe—Prole.for.
safety.technology,.Version.1.30,.June.2004,.Order.No:.3.092,.PROFIBUS.International.)
© 2011 by Taylor and Francis Group, LLC