140 BIBLIOGRAPHY
[11] A. Brandt, “Multi-level adaptive solutions to boundary value problems,” Math.
Comp., vol. 31, no. 138, pp. 333–390, 1977.
[12] A. Brandt, “Multiscale scientific computation: review 2001,” Multiscale and Mul-
tiresolution Methods: Theory and Applications, Yosemite Educational Symposium
Conf. Proc., 2000, Lecture Notes in Comp. Sci. and Engrg., T.J. Barth, et.al (eds.),
vol. 20, pp. 3–96, Springer-Verlag, 2002.
[13] W. L. Briggs, V. E. Henson and S. F. McCormick, A Multigrid Tutorial, SIAM
Publications, 2nd ed., 2000.
[14] D. A. Caughey and A. Jameson, “Fast preconditioned multigrid solution of th e
Euler and Navier-Stokes equations for steady compressible flows,” International J.
for Numerical Methods in Fluids, vol. 43, pp. 537–553, 2003.
[15] S. D. Conte and C. de Boor, Elementary Numerical Analysis, McGraw-Hill, 1980.
[16] I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992.
[17] S. F. Davis and J. E. Flaherty, “An adaptive finite element method for initial bound-
ary value problems for partial differential equations,” SIAM J. Scientific and Sta-
tistical Computing, vol. 3, pp. 6–27, 1982.
[18] C. de Boor, R.A. DeVore and A. Ron, “Approximation from shift-invariant subspaces
of L
2
(R
d
)”, Transactions of the American Mathematical Society, vol. 341, No. 2, pp.
787–806, 1994.
[19] L. Demanet and L. Ying, “Discrete symbol calculus,” preprint.
[20] P. Deuflhard and A. Hohmann, Numerical Analysis in Modern Scientific Computing:
An Introduction, Springer, 2000.
[21] W. E, M. Mu and H. Huang, “A posteriori error estimates for finite element meth-
ods,” Chinese Quarterly Journal of Mathematics, vol. 3, pp. 97–106, 1988.
[22] R.P. Fedorenko, “Iterative methods for elliptic difference equations,” Russian Math-
ematical Surveys, vol. 28, pp. 129–195, 1973.