280 References
[69] Guskov, I., Schr
¨
oder, P. and Sweldens, W.: Multiresolution signal processing for
meshes. Proceedings of SIGGRAPH 99, Annual Conference Series, pp. 325–
334. New York: Addison Wesley Longman, 1999.
[70] Habib, A. and Warren, J.: Edge and vertex insertion for a class of
C
1
subdivision
surfaces. Computer-Aided Geometric Design 16(4), pp. 223–247, 1999.
[71] Halstead, M., Kass, M. and DeRose, T.: Efficient, fair interpolation using
Catmull-Clark surfaces. Proceedings of SIGGRAPH 93, Annual Conference
Series. New York: ACM Press, pp. 35–44, 1993.
[72] Harder, R. and Desmarias, R.: Interpolation using surface splines. Journal of
Aircraft 9, pp. 189–197, 1972.
[73] Holt, F.: Towards a curvature-continuous stationary subdivision algorithm.
Z. Angew. Math. Mech. 76, pp. 423–424, 1996.
[74] Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin, H., McDonald, J.,
Schweitzer, J. and Stuetzle, W.: Piecewise smooth surface reconstruction. Pro-
ceedings of SIGGRAPH 94, Annual Conference Series. New York: ACM
Press, pp. 295–302, 1994.
[75] Horn, R. and Johnson, C.: Topics in matrix analysis. New York: Cambridge
University Press, 1991.
[76] Hoschek, J. and Lasser, D.: Fundamentals of computer-aided geometric design.
Boston: A. K. Peters, 1993.
[77] Jesperson, D.: Multigrid methods for partial differential equations. Studies in
Numerical Analysis 24, 1984.
[78] Kass, M. and Miller, G.: Rapid, stable fluid dynamics for computer graphics.
Proceedings of SIGGRAPH 89, Annual Conference Series, pp. 49–57, New
York: Addison Wesley, 1989.
[79] Kelly, C. T.: Iterative methods for linear and nonlinear systems. Philadelphia:
Society of Industrial and Applied Mathematics, 1995.
[80] Kobbelt, L.: Interpolatory refinement by variational methods. In Chui, C. and
Schumaker, L. (eds.): Approximation theory VIII, volume two: wavelets and
multilevel approximation, World Scientific Publishing, pp. 217–224, 1995.
[81] Kobbelt, L.: Interpolating subdivision on open quadrilateral nets with arbitrary
topology. Computer Graphics Forum 15, pp. 409–420, 1996.
[82] Kobbelt, L.: A variational approach to subdivision. Computer-Aided Geo-
metric Design 13(8), pp. 743–761, 1996.
[83] Kobbelt, L.: Fairing by finite difference methods. In Daehlen, M., Lyche, T.
and Schumaker, L. (eds.): Mathematical methods for curves and surfaces II,
Nashville: Vanderbilt University Press, 1998.
[84] Kobbelt, L.: Discrete fairing and variational subdivision for freeform surface
design. The Visual Computer 16(3-4), pp. 142–150, 2000.
[85] Kobbelt, L.:
√
3-subdivision. Proceedings of SIGGRAPH 2000, Annual Con-
ference Series, pp. 103–112, New York: Addison Wesley Longman, 2000.
[86] Kobbelt, L., Campagna, S., Vorsatz, J. and Seidel, H.: Interactive multi-
resolution modeling on arbitrary meshes. Proceedings of SIGGRAPH 98,
Annual Conference Series, pp. 105–114. New York: Addison Wesley, 1998.