356 Chapter 10. Hemoglobin: Protein Function in Microcosm
Ferry, G., Max Perutz and the Secret of Life, Cold Spring Harbor
Laboratory Press (2007). [A definitive biography.]
Hendgen-Cotta, U.B., et al., Nitrite reductase activity of myoglo-
bin regulates respiration and cellular viability in myocardial
ischemia–reperfusion injury, Proc. Natl. Acad. Sci. 105,
10256–10261 (2008).
Judson, H.F., The Eighth Day of Creation (expanded edition),
Chapters 9 and 10, Cold Spring Harbor Laboratory Press
(1996). [Includes a fascinating historical account of how our
present perception of hemoglobin structure and function came
about.]
Lukin, J.A. and Ho, C.,The structure–function relationship of he-
moglobin in solution at atomic resolution, Chem. Rev. 104,
1219–1230 (2004).
Royer, W.E., Jr., Zhu, H., Gorr, T.A., Flores, J.F., and Knapp, J.E.,
Allosteric hemoglobin assembly: diversity and similarity, J.
Biol. Chem. 280, 27477–27480 (2005). [Reviews the different
types of hemoglobins.]
Vinogradov, S.N. and Moens, L., Diversity of globin function: enzy-
matic, transport, storage, and sensing, J. Biol. Chem. 283,
8773–8777 (2008). [Discusses globin-mediated reactions with
NO as well as neuroglobin and cytoglobin.]
Structures of Myoglobin, Hemoglobin, and
Model Compounds
Brunori, M., Nitric oxide moves myoglobin to center stage,Trends
Biochem. Sci. 26, 209–210 (2001).
Fermi, G., Perutz, M.F., Shaanan, B., and Fourme, R., The crystal
structure of human deoxyhaemoglobin at 1.74 Å, J. Mol. Biol.
175, 159–174 (1984).
Jameson, G.B., Molinaro, F.S., Ibers, J.A., Collman, J.P., Brauman,
J.I., Rose, E., and Suslick, K.S., Models for the active site of
oxygen-binding hemoproteins. Dioxygen binding properties
and the structures of (2-methylimidazole)-meso-tetra(␣,␣,␣,␣-
o-pivalamidophenyl)porphinato iron(II)-ethanol and its dioxy-
gen adduct, J. Am. Chem. Soc. 102, 3224–3237 (1980). [The
picket-fence complex.]
Liddington, R., Derewenda, Z., Dodson, G., and Harris, D., Struc-
ture of the liganded T state of haemoglobin identifies the ori-
gin of cooperative oxygen binding,Nature 331, 725–728 (1988).
Ordway, G.A. and Garry, D.J., Myoglobin: an essential hemopro-
tein in striated muscle, J. Exp. Biol. 207, 341–3446 (2004).
Phillips, S.E.V., Structure and refinement of oxymyoglobin at 1.6
Å resolution, J. Mol. Biol. 142, 531–554 (1980).
Shaanan, B., Structure of human oxyhaemoglobin at 2.1 Å resolu-
tion, J. Mol. Biol. 171, 31–59 (1983).
Takano, T., Structure of myoglobin refined at 2.0 Å resolution,
J. Mol. Biol. 110, 537–568, 569–584 (1977).
Mechanism of Hemoglobin Oxygen Binding
Baldwin, J. and Chothia, C., Haemoglobin: The structural changes
related to ligand binding and its allosteric mechanism, J. Mol.
Biol. 129, 175–220 (1979). [The exposition of a detailed mech-
anism of O
2
binding to Hb based on the structures of oxyHb
and deoxyHb.]
Barrick, D., Ho, N.T., Simplaceanu,V., Dahlquist, F.W., and Ho, C.,
A test of the role of the proximal histidines in the Perutz
model for cooperativity in haemoglobin, Nature Struct. Biol. 4,
78–83 (1997). [Describes the experiments in which the proxi-
mal His is detached from the F helix.]
Gelin, B.R., Lee, A.W.-N., and Karplus, M., Haemoglobin tertiary
structural change on ligand binding, J. Mol. Biol. 171, 489–559
(1983).[A theoretical study of the dynamics of O
2
binding to Hb.]
Perutz, M.F., Stereochemistry of cooperative effects in haemoglo-
bin, Nature 228, 726–734 (1970). [The landmark paper in which
the Perutz mechanism was first proposed. Although many of
its details have since been modified, the basic model remains
intact.]
Perutz, M.F., Regulation of oxygen affinity of hemoglobin, Annu.
Rev. Biochem. 48, 327–386 (1979). [An examination of the
Perutz mechanism in light of structural and spectroscopic data.]
Perutz, M.F., Mechanisms of cooperativity and allosteric regula-
tion in proteins, Q. Rev. Biophys. 22, 139–236 (1989). [Contains
a detailed structural description of allosterism in hemoglobin.]
Perutz, M.F., Wilkinson, A.J., Paoli, M., and Dodson, G.G., The
stereochemical mechanism of the cooperative effects in hemo-
globin revisited, Annu. Rev. Biophys. Biomol. Struct. 27, 1–34
(1998).
Bohr Effect and BPG Binding
Arnone, A., X-ray studies of the interaction of CO
2
with human
deoxyhaemoglobin, Nature 247, 143–145 (1974).
Benesch, R.E. and Benesch, R., The mechanism of interaction of
red cell organic phosphates with hemoglobin, Adv. Prot. Chem.
28, 211–237 (1974).
Kilmartin, J.V. and Rossi-Bernardi, L.,Interactions of hemoglobin
with hydrogen ion, carbon dioxide and organic phosphates,
Physiol. Rev. 53, 836–890 (1973).
Lenfant, C., Torrance, J., English, E., Finch, C.A., Reynafarje, C.,
Ramos, J., and Faura, J., Effect of altitude on oxygen binding by
hemoglobin and on organic phosphate levels, J. Clin. Invest. 47,
2652–2656 (1968).
Perutz, M.F., Kilmartin, J.V., Nishikura, K., Fogg, J.H., and Butler,
P.J.G., Identification of residues contributing to the Bohr effect
of human haemoglobin, J. Mol. Biol. 138, 649–670 (1980).
Richard, V., Dodson, G.G., and Mauguen, Y., Human deoxy-
haemoglobin-2,3-diphosphoglycerate complex low-salt struc-
ture at 2.5 Å resolution, J. Mol. Biol. 233, 270–274 (1993).
Sun, D.P., Zou, M., Ho, N.T., and Ho, C., Contribution of surface
histidyl residues in the ␣-chain of the Bohr effect of human
normal adult hemoglobin: Roles of global electrostatic effects,
Biochemistry 36, 6663–6673 (1997).
Abnormal Hemoglobins
Baudin-Chich, V., Pagnier, J., Marden, M., Bohn, B., Lacaze, N.,
Kister, J., Schaad, O., Edelstein, S.J., and Poyart, C., Enhanced
polymerization of recombinant human deoxyhemoglobin 6
Glu S Ile, Proc. Natl. Acad. Sci. 87, 1845–1849 (1990).
Bunn, F.H., Pathogenesis and treatment of sickle cell disease, New
Engl. J. Med. 337, 762–769 (1997).
Bunn, F.H., Human hemoglobins: sickle hemoglobin and other
mutants, in Stamatoyannopoulos, G., Majerus, P.W., Perlmut-
ter, R.M., and Varmus, H. (Eds.), The Molecular Basis of Blood
Diseases (3rd ed.), Chapter 7, Elsevier (2001).
Eaton,W.A. and Hofrichter,J., Sickle cell hemoglobin polymeriza-
tion, Adv. Prot. Chem. 40, 63–279 (1990). [An exhaustive re-
view of HbS polymerization.]
Eaton, W.A. and Hofrichter, J., The biophysics of sickle cell hy-
droxyurea therapy, Science 268, 1142–1143 (1995).
Harrington, D.J.,Adachi, K.,and Royer,W.E., Jr.,The high resolu-
tion crystal structure of deoxyhemoglobin S, J. Mol. Biol. 272,
398–407 (1997).
Nagel, R.L., Haemoglobinopathies due to structural mutations, in
Provan, D. and Gribben, J. (Eds.), Molecular Haematology, pp.
121–133, Blackwell Science (2000).
Perutz, M., Protein Structure. New Approaches to Disease and
Therapy, Chapter 6, Freeman (1992).
Perutz, M.F. and Lehmann, H., Molecular pathology of human
JWCL281_c10_323-358.qxd 2/24/10 1:58 PM Page 356