Cuff, J.A. and Barton, G.J., Evaluation and improvement of multi-
ple sequence methods for protein secondary structure predic-
tion, Proteins 34, 508–519 (1999). [The principles behind
Jpred3.]
Das, R. and Baker, D., Macromolecular modeling with Rosetta,
Annu. Rev. Biochem. 77, 363–382 (2008).
DeGrado W.F., Summa, S.M., Pavone,V., Nastri, F., and Lombardi,
A., De novo design and structural characterization of proteins
and metalloproteins, Annu. Rev. Biochem. 68, 779–819 (1999).
Kuhlman, B., Dantas, G., Ireton, G.C., Varani, G., Stoddard, B.L.,
and Baker, D., Design of a novel protein fold with atomic-
level accuracy, Science 302, 1364–1368 (2003). [The design
of Top7.]
Lesk, A.M., Introduction to Bioinformatics (3rd ed.), pp. 333–358,
Oxford University Press (2008).
Mirny, L. and Shakhnovitch, E., Protein folding theory: From lat-
tice to all-atom models, Annu. Rev. Biophys. Biomol. Struct. 30,
361–396 (2001).
Moult, J., Fidelis, K., Kryshtofovych, A., Rost, B., and Tramon-
tano, A., Critical assessment of methods of protein structure
prediction—Round VIII, Proteins 77 (Issue S9), 1–4 (2009).
[The summary article of the issue of Proteins: Structure,Func-
tion, and Bioinformatics that reports the results of CASP8.]
Rose, G.D., Prediction of chain turns in globular proteins on a hy-
drophobic basis, Nature 272, 586–590 (1978).
Tramontano,A., Protein Structure Prediction. Concepts and Appli-
cations, Wiley-VCH (2006).
Zaki, M.J. and Bystroff, C. (Eds.), Protein Structure Prediction
(2nd ed.), Humana Press (2008).
Protein Dynamics
Henzler-Wildman, K. and Kern, D., Dynamic personalities of pro-
teins, Nature 450, 964–972 (2007).
Karplus, M. and McCammon,A., Molecular dynamics simulations
of biomolecules, Nature Struct. Biol. 9, 646–651 (2002).
Palmer,A.G., III, Probing molecular motion by NMR, Curr. Opin.
Struct. Biol. 7, 732–737 (1997).
Protein dynamics, Science 324, 197–215 (2009). [A special section
containing four articles.]
Rasmussen, B.F., Stock, A.M., Ringe, D., and Petsko, G.A., Crys-
talline ribonuclease A loses function below the dynamical
transition at 220 K, Nature 357, 423–424 (1992).
Ringe, D. and Petsko, G.A., Mapping protein dynamics by X-ray
diffraction, Prog. Biophys. Mol. Biol. 45, 197–235 (1985).
Scheraga, H.A., Khalili, M., and Liwo,A., Protein-folding dynam-
ics: Overview of molecular simulation techniques, Annu. Rev.
Phys. Chem. 58, 57–83 (2007).
Conformational Diseases
Booth, D.R., et al., Instability, unfolding and aggregation of hu-
man lysozyme variants underlying amyloid fibrillogenesis, Na-
ture 385, 787–73 (1997); and Funahashi, J., Takano, K., Ogasa-
hara, K., Yamagata, Y., and Yutani, K., The structure, stability,
and folding process of amyloidogenic mutant lysozyme,
J. Biochem. 120, 1216–1223 (1996).
Büeler, H., Aguzzi, A., Sailer, A., Greiner, R.A., Autenreid, P.,
Aguet, M., and Weissmann, C.,Mice devoid of PrP are resistant
to scrapie, Cell 73, 1339–1347 (1993); and Büeler, H., Fischer,
M., Lang, Y., Bluethmann, H., Lipp, H.-P., DeArmond, S.J.,
Prusiner, S.B., Aguet, M., and Weissmann, C., Normal develop-
ment and behaviour of mice lacking the neuronal cell-surface
PrP protein, Nature 356, 577–582 (1992).
Buxbaum, J.N. and Tagoe, C.E., The genetics of amyloidoses,
Annu. Rev. Med. 51, 543–569 (2000).
Caughey, B., Baron, G.S., Chesebro, B., and Jeffrey, M., Getting a
grip on prions: oligomers, amyloids, and pathological mem-
brane interactions, Annu. Rev. Biochem. 78, 177–204 (2009).
Chien, P.,Weissman, J.S., and DePace, J.H., Emerging principles of
conformation-based inheritance, Annu. Rev. Biochem. 73,
617–656 (2004).
Chiti, F. and Dobson,C.M., Protein misfolding, functional amyloid,
and human disease, Annu. Rev. Biochem. 75, 333–366 (2006).
Collinge, J. and Clarke,A.R.,A general model of prion strains and
their pathogenicity, Science 318, 930–936 (2007).
Deleault, N.R., Harris, B.T., Rees, J.R., and Supattapone, S., For-
mation of native prions from minimal components in vitro,
Proc. Natl. Acad. Sci. 104, 9741–9746 (2007).
Geula, C., Wu, C.-K., Saroff, D., Lorenzo, A., Yuan, M., and
Yankner, B.A., Aging renders the brain vulnerable to amyloid
-protein neurotoxicity, Nature Med. 4, 827–831 (1998).
Goedert, M. and Spillantini, M.G., A century of Alzheimer’s dis-
ease, Science 314, 777–781 (2006).
Gregersen, N., Bross, P., Vang, S., and Christiensen, J.H., Protein
misfolding and human disease, Annu. Rev. Genomics Hum.
Genet. 7, 103–124 (2006).
Hardy, J. and Selkoe, D.J., The amyloid hypothesis of Alzheimer’s
disease: Progress and problems on the road to therapeutics,
Science 297, 353–356 (2002).
Jackson, G.S. and Clarke, A.R., Mammalian prion proteins, Curr.
Opin. Struct. Biol. 10, 69–74 (2000).
Kajava,A., Squire,J.M., and Parry, D.A.D. (Eds.), Fibrous Proteins:
Amyloids, Prions and Beta Proteins, Adv. Prot. Chem. 73
(2006). [The last four chapters are on various aspects of amy-
loids and prions.]
Moore, R.A., Taubner, L.M., and Priola, S.A., Prion misfolding
and disease, Curr. Opin. Struct. Biol. 19, 14–22 (2009).
Pan, K.M., Baldwin, M., Nguyen, J., Gasset, M., Serban, A., Groth,
D., Mehlhorn, I., Huang, Z., Fletterick, R.J., Cohen, F.E., and
Prusiner, S.B., Conversion of ␣-helices into -sheet features in
the formation of the scrapie prion proteins, Proc. Natl. Acad.
Sci. 90, 10962–10966 (1993).
Prusiner, S.B. (Ed.), Prion Biology and Diseases (2nd ed.), Cold
Spring Harbor Laboratory Press (2004); and Prion diseases, in
Valle,D. (Ed.), The Online Metabolic & Molecular Bases of In-
herited Disease, http://www.ommbid.com/, Chap. 224.
Rochet, J.C. and Lansbury, P.T., Jr.,Amyloid fibrillogenesis:Themes
and variations, Curr. Opin. Struct. Biol. 10, 60–68 (2000).
Sawaya, M.R., et al., Atomic structures of amyloid cross- spines
reveal varied steric zippers, Nature 447, 453–457 (2007); and
Nelson, R., Sawaya, M.R., Balbirnie, M., Madsen,A.Ø., Riekel,
C.,Grothe,R.,and Eisenberg,D., Structure of the cross- spine
of amyloid-like fibrils, Nature 435, 773–778 (2005).
Selkoe, D.J., Cell biology of protein misfolding: the examples of
Alzheimer’s and Parkinson’s diseases, Nature Cell Biol. 6,
1054–1061 (2004).
Soto, C., Estrada, L., and Castilla, J., Amyloids, prions and the in-
herent infectious nature of misfolded proteins, Trends
Biochem. Sci. 31, 150–155 (2006).
Sparrer, H.E., Santoso,A., Szoka, F.C., Jr., and Weissman, J.S., Ev-
idence for the prion hypothesis: Induction of the yeast [PSI
⫹
]
factor by in vitro-converted Sup35 protein, Science 289,
595–599 (2000).
Tuite, M.F.,Yeast prions and their prion-forming domain, Cell 100,
289–292 (2000).
Weissmann, C., The state of the prion, Nature Rev. Microbiol. 2,
861–862 (2004).
Wiltzius, J.J.W., Sievers, S.A., Sawaya, M.R., Cascio, D., Popov, D.,
Riekel, C., and Eisenberg, D., Atomic structure of the cross-
References 321
JWCL281_c09_278-322.qxd 6/1/10 7:35 AM Page 321