K = {(x, y) |2 6
p
x
2
+ y
2
6 3} P ((X, Y ) ∈
K) =
ZZ
K
f(x, y)dxdy =
1
8π
2π
Z
0
dϕ
3
Z
2
ρe
−
ρ
2
2
dρ
= −e
−
ρ
2
8
¯
¯
¯
3
2
= e
−
1
2
− e
−
9
8
D = {(x, y) |2 6 min(|x|, |y|), max(|x|, |y|) 6 3} =
= {(x, y) |2 6 x 6 3, 2 6 y 6 3} ∪
∪{(x, y) | − 3 6 x 6 −2, 2 6 y 6 3} ∪
∪{(x, y) | − 3 6 x 6 −2, −3 6 y 6 −2} ∪
∪{(x, y) |2 6 x 6 3, −3 6 y 6 −2},
f(x, y) P ((X, Y ) ∈ D) =
= 4
ZZ
2 6 x 6 3
2 6 y 6 3
f(x, y)dxdy = 4
1
√
2π 2
3
Z
2
e
−
x
2
8
dx
1
√
2π 2
×
×
3
Z
2
e
−
y
2
8
dy = 4
µ
Φ
µ
3
2
¶
− Φ(1)
¶
2
.
D = {(x, y) |2 6 |x|+ |y| 6 3}
Q
1
= {(x, y) ||x| + |y| 6 3} Q
2
=
{(x, y) ||x|+ |y| 6 2} P ((X, Y ) ∈ D) =
=
ZZ
D
f(x, y)dxdy =
ZZ
Q
1
f(x, y)dxdy −
ZZ
Q
2
f(x, y)dxdy.
x + y = u −x + y = v
x =
1
2
(u − v), y =
1
2
(u + v),
∂(x, y)
∂(u, v)
=
¯
¯
¯
¯
¯
1
2
−
1
2
1
2
1
2
¯
¯
¯
¯
¯
=
1
2