708 18. Einstein’s Equations
[Pen1] R. Penrose, Gravitational collapse: The role of General Relativity, Revista del
Nuovo Cimento 1(1969), 252–276.
[Pen2] R. Penrose, Techniques of Differential Topology in Relativity,Reg.Conf.Ser.in
Appl. Math. #7, SIAM, Phila., 1972.
[PR] R. Penrose and W. Rindler, Spinors and Space-Time, Cambridge University
Press, Cambridge, 1984.
[Rin] W. Rindler, Essential Relativity, Springer, New York, 1977.
[SW] R. Sachs and H. Wu, General Relativity for Mathematicians, Springer,
New York, 1977.
[SV] J. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems,
Springer, New York, 1985.
[SY] R. Schoen and S.-T. Yau, On the proof of the positive mass conjecture in General
Relativity, Comm. Math. Phys. 65(1979), 45–76.
[Schu] B. Schultz, A First Course in General Relativity, Cambridge University Press,
Cambridge, 1985.
[Schw] K. Schwarzschild,
¨
Uber das Gravitationsfeld eines Massenpunktes nach der
Einsteinschen Theorie, Sitzber. Deut. Akad. Wiss. Berlin Kl. Math. Phys. Tech.
(1916), 189–196.
[Sm] L. Smarr (ed.), Sources of Gravitational Radiation, Cambridge University Press,
Cambridge, 1979.
[SY] L. Smarr and J. York, Kinematical conditions in the construction of spacetime,
Phys. Rev. D 17(1978), 2529–2551.
[ST] J. Smoller and B. Temple, Global solutions of the relativistic Euler equation,
Comm. Math. Phys. 156(1993), 67–99.
[ST2] J. Smoller and B. Temple, Shock-wave solutions of the Einstein equations: the
Oppenheimer-Snyder model of gravitational collapse extended to the case of
non-zero pressure, Arch. Rat. Mech. Anal. 128(1994), 249–297.
[SWYM] J. Smoller, A. Wasserman, S.-T. Yau, and B. McLeod, Smooth static solutions
of the Einstein/Yang-Mills equations, Comm. Math. Phys. 143(1991), 115–147.
[Stew] J. Stewart, Advanced General Relativity, Cambridge University Press,
Cambridge, 1990.
[Str] N. Strauman, General Relativity and Relativistic Astrophysics, Springer,
New York, 1984.
[Tau1] A. Taub (ed.), Studies in Applied Mathematics, MAA Studies in Math., Vol. 7,
Printice Hall, Englewood Cliffs, N. J., 1971.
[Tau2] A. Taub, Relativistic hydrodynamics, pp. 150–180 in A. Taub (ed.), Studies in
Applied Mathematics, MAA Studies in Math., Vol. 7, Printice Hall, Englewood
Cliffs, N. J., 1971.
[Tau3] A. Taub, High-frequency gravitational waves, two-timing, and averaged
Lagrangians, pp. 539–555 in A. Held (ed.), General Relativity and Gravitation,
Vol. 1, Plenum, New York, 1980.
[Tay] M. Taylor, Pseudodifferential Operators and Nonlinear PDE,B
irkh¨auser,
Boston, 1991.
[Wa] R. Wald, General Relativity, University of Chicago Press, Chicago, 1984.
[Wein] S. Weinberg, Gravitation and Cosmology, Wiley, New York, 1972.
[We1] G. Weinstein, On rotating black holes in equilibrium in general relativity, CPAM
43(1990), 903–948.
[We2] G. Weinstein, The stationary axisymmetric two-body problem in equilibrium in
general relativity, CPAM 45(1992), 1183–1203.
[Wey] H. Weyl, Space, Time, Matter, Dover, New York, 1952.