706 18. Einstein’s Equations
[CBY] Y. Choquet-Bruhat and J. York, The Cauchy Problem, pp. 99–172 in A. Held
(ed.), General Relativity and Gravitation, Vol. 1, Plenum, New York, 1980.
[CBY2] Y. Choquet-Bruhat and J. York, Geometrical well posed systems for the Einstein
equations, C R Acad. Sci. Paris Ser I Math. 321(1995), 1089–1095.
[CK] D. Christodoulou and S. Klainerman, The Global Nonlinear Stability of the
Minkowski Space, Princeton University Press, Princeton, N. J., 1993
[CO] D. Christodoulou and N. O’Murchadha, The boost problem in general relativity,
Comm. Math. Phys. 80(1981), 271–300.
[DC] T. DeFelice and C. Clarke, Relativity on Curved Manifolds, Cambridge
University Press, Cambridge, 1990.
[DeT] D. DeTurck, The Cauchy problem for Lorentz metrics with prescribed Ricci
curvature, Comp. Math. 48(1983), 327–349.
[DD] C. DeWitt and B. DeWitt (eds.), Black Holes, Gordon and Breach, New York,
1973.
[Dim] J. Dimock, Scattering for the wave equation on the Schwarzschild metric, Gen.
Relat. Grav. 17(1985), 353–369.
[Edd] A. Eddington, The Mathematical Theory of Relativity, Cambridge University
Press, Cambridge, 1922.
[EGH] T. Eguchi, P. Gilkey, and A. Hanson, Gravitation, gauge theories, and differential
geometry, Phys. Rep., 66(1980) 6.
[Ein1] A. Einstein, Zur Allgemeinen Relativit¨atstheorie, Preuss. Akad. Wiss. Berlin
(1915), 778–786.
[Ein2] A. Einstein, Der Feldgleichungen der Gravitation, Preuss. Akad. Wiss. Berlin
(1915), 844–847.
[Ein3] A.Einstein, Hamiltonschen Prinzip und allgemeine Relativit¨atstheorie, Preuss.
Akad. Wiss. Berlin (1916), 1111–1116.
[Ev] C. Evans, Enforcing the momentum constraints during axisymmetric spacelike
simulations, pp. 194–205 in C. Evans, L. Finn, and D. Hobill (eds.), Frontiers
in Numerical Relativity, Cambridge University Press, Cambridge, 1989.
[EFH] C. Evans, L. Finn, and D. Hobill (eds.), Frontiers in Numerical Relativity,
Cambridge University Press, Cambridge, 1989.
[FM1] A. Fischer and J. Marsden, The Einstein evolution equation as a first-order
symmetric hyperbolic quasilinear system, Comm. Math. Phys. 28(1972), 1–38.
[FM2] A. Fischer and J. Marsden, The Einstein equations of evolution–a geometric
approach, J. Math. Phys. 13(1972), 546–568.
[FM3] A. Fischer and J. Marsden, The initial value problem and the dynamical for-
mulation of general relativity, pp. 138–211 in S. Hawking and W. Israel (eds.),
General Relativity, an Einstein Centenary Survey, Cambridge University Press,
Cambridge, 1979.
[FKL] M. Flato, R. Kerner, and A. Lichnerowicz, Physics on Manifolds,Kluwer,
Boston, 1994.
[Fran] T. Frankel, G
ravitational Curvature, W. H. Freeman, San Fransisco, 1979.
[Ful] S. Fulling, Aspects of Quantum Field Theory in Curved Space-Time, Cambridge
University Press, Cambridge, 1989.
[HE] S. Hawking and G. Ellis, The Large Scale Structure of Space-time, Cambridge
University. Press, Cambridge, 1973.
[HI1] S. Hawking and W. Israel (eds.), General Relativity, an Einstein Centenary Sur-
vey, Cambridge University Press, Cambridge, 1979.
[HI2] S. Hawking and W. Israel (eds.), 300 Years of Gravitation, Cambridge
University Press, Cambridge, 1987.