References 613
[LMNT] M. Lopes Filho, A. Mazzucato, H. Nussenzveig Lopes, and M. Taylor, Vanishing
viscosity limits and boundary layers for circularly symmetric 2D flows, Bull.
Braz. Math. Soc. 39 (2008), 471–513.
[Mj] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Sev-
eral Space Variables, Appl. Math. Sci. #53, Springer, New York, 1984.
[Mj2] A. Majda, Vorticity and the mathematical theory of incompressible fluid flow,
CPAM 38(1986), 187–220.
[Mj3] A. Majda, Mathematical fluid dynamics: The interaction of nonlinear anal-
ysis and modern applied mathematics, Proc. AMS Centennial Symp. (1988),
351–394.
[Mj4] A. Majda, Vorticity, turbulence, and acoustics in fluid flow, SIAM Rev. 33(1991),
349–388.
[Mj5] A. Majda, Remarks on weak solutions for vortex sheets with a distinguished
sign, Indiana Math. J. 42(1993), 921–939.
[MP] C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Non-
viscous Fluids, Springer, New York, 1994.
[Mat] S. Matsui, Example of zero viscosity limit for two-dimensional nonstation-
ary Navier–Stokes flow with boundary, Jpn. J. Indust. Appl. Math. 11 (1994),
155–170.
[MT1] A. Mazzucato and M. Taylor, Vanishing viscosity plane parallel channel flow
and related singular perturbation problems, Anal. PDE 1 (2008), 35–93.
[MT2] A. Mazzucato and M. Taylor, Vanishing viscosity limits for a class of circular
pipe flows, Comm. PDE, to appear.
[MF] R. von Mises and K. O. Friedrichs, Fluid Dynamics, Appl. Math. Sci. 5, Springer,
New York, 1971.
[MiT] M. Mitrea and M. Taylor, Navier–Stokes equations on Lipschitz domains in
Riemannian manifolds, Math. Ann. 321 (2001), 955–987.
[Mon] S. Monniaux, Navier–Stokes equations in arbitrary domains: the Fujita–Kato
scheme, Math. Res. Lett. 13 (2006), 455–461.
[OO] H. Ockendon and J. Ockendon, Viscous Flow, Cambridge University Press,
Cambridge, 1995.
[OT] H. Ockendon and A. Tayler, Inviscid Fluid Flow, Appl. Math. Sci. #43, Springer,
New York, 1983.
[PT] L. Prandtl and O. Tietjens, Applied Hydro- and Aerodynamics, Dover, New York,
1934.
[Saf] P. S affm an, Vortex Dynamics, Cambridge University Press, Cambridge, 1992.
[Sch] H. Schlichting, Boundary Layer Theory, 8th ed., Springer, New York, 2000.
[Se1] J. Serrin, Mathematical principles of classical fluid dynamics, Encycl. of Physics,
Vol. 8, pt. 1, pp. 125–263, Springer, New York, 1959.
[Se2] J. Serrin, The initial value problem for the Navier–Stokes equations, in Non-
linear Problems, R.E.Langer, ed., University of Wisc. Press, Madison, Wisc.,
1963,
pp. 69–98.
[Sol1] V. Solonnikov, On estimates of the tensor Green’s function for some boundary-
value problems, Dokl. Akad. Nauk SSSR 130(1960), 988–991.
[Sol2] V. Solonnikov, Estimates for solutions of nonstationary Navier–Stokes equa-
tions, J. Sov. Math. 8(1977), 467–529.
[T1] M. Taylor, Pseudodifferential Operators and Nonlinear PDE,Birkh¨auser,
Boston, 1991.
[T2] M. Taylor, Analysis on Morrey spaces and applications to Navier–Stokes and
other evolution equations, Comm. PDE 17(1992), 1407–1456.