References 403
[34] S. Hoffman, S. Bartlett, M. Finkerath, A. Evulet, and T. Ursin, Performance
and cost analysis of advanced gas turbine cycles with postcombustion CO2
capture, J. Eng. Gas Turbines Power 131, 021701-1 (2009).
[35] B. Andreini and B. Facchini, Gas turbines design and off-design performance
analysis with emissions – Evaluation, J. Eng. Gas Turbines Power 126, 83–91
(2004).
[36] M. Johnson, D. Littlejohn, W. Nazeer, K. Smith, and R. K. Cheng, A comparison
of the flowfields and emissions of high-swirl injectors and low-swirl injectors
for lean premixed gas turbines, Proc. Combust. Inst. 30, 2867–2874 (2005).
[37] H. C. Mongia, TAPS – A 4th generation propulsion combustor technology for
low emissions, AIAA paper 2003–2657 (2003).
[38] S. Dhanuka, J. Temme, and J. F. Driscoll, Vortex shedding and mixing layer
effects on periodic flashback in a lean premixed prevaporized gas turbine
combustor, Proc. Combust. Inst. 32, 2901–2908 (2009).
[39] U. Stopper, M. Aigner, W. Meier, R. Sandanandan, M. Stohr, and I. S. Kim,
Flow field and combustion characterization of premixed gas turbine flames by
planar laser techniques, J. Eng. Gas Turbines Power 131, 021504-1 (2009).
[40] S. Dhanuka, J. Temme, and J. F. Driscoll, Unsteady aspects of lean premixed-
prevaporized gas turbine combustors: Flame-flame and flame-shear layer In-
teractions, submitted to J. Propul. Power.
[41] G. Eggenspieler and S. Menon, Large eddy simulation of pollutant emission in
a DOE-HAT combustor, J. Propul. Power 20, 1076–1085 (2004).
[42] Y. Huang, H. G. Sung, S.-Y. Hsieh, and V. Yang, Large eddy simulation of
combustion dynamics of lean premixed swirl stabilized combustor, J. Propul.
Power 19, 782–794 (2003).
[43] P. N. Kioni, K. N. C. Bray, D. A. Greenhalgh, and B. Rogg, Experimental and
numerical studies of a triple flame, Combust. Flame 116, 192–206 (1999).
[44] Y. Mizobuchi, S. Tachibana, J. Shinio, S. Ogawa, and T. Takeno, A numerical
analysis of the structure of a turbulent hydrogen jet lifted flame, Proc. Combust.
Inst. 29, 2009–2015 (2002).
[45] R. S. Barlow, G. H. Wang, P. Anselmo, M. S. Sweeney, and S. Hochgreb, Appli-
cation of Raman/Rayleigh/LIF diagnostics in turbulent stratified flame, Proc.
Combustion Inst. 32, 945–953 (2009).
[46] B. O. Ayoola, R. Balachandran J. H. Frank, E. Mastorakos, and C. F. Kamin-
ski, Spatially resolved heat release rate measurements in turbulent premixed
flames, Combust. Flame 144, 16 (2006).
[47] B. A. V. Bennett, Z. Cheng, R. W. Pitz, and M. D. Smooke, Computational
and experimental study of oxygen-enhanced axisymmetric laminar methane
flames, Combust. Theory Model. 12, 497–527 (2008).
[48] G. T. Kalghatgi, Liftoff heights and visible lengths of vertical turbulent jet
diffusion flames in still air, Combust. Sci. Technol. 41, 17–29 (1984).
[49] G. T. Kalghatgi, Blow out stability of gaseous jet diffusion flames. Part 1: In
still air, Combust. Sci. Technol. 26, 233–239 (1981).
[50] G. T. Kalghatgi, Blow out stability of gaseous jet diffusion flames. Part 2: Effect
of cross wind, Combust. Sci. Technol. 26, 241–244 (1981).
[51] W. J. A. Dahm and A. G. Mayman, Blowout limits of turbulent jet diffusion
flames for arbitrary source conditions, AIAA J. 28, 1157–1162 (1990).
[52] D. Feikema, R. H. Chen, and J. F. Driscoll, Enhancement of flame blowout
limit by the use of swirl, Combust. Flame 80, 183–195 (1990).
[53] J. F. Driscoll and C. C. Rasmussen, Correlation and analysis of blowout limits
of flames in high-speed airflows, J. Propul. Power 21, 1035–1044 (2005).
[54] L. Vanquickenborne and A. van Tiggelen, The stabilization mechanism of lifted
diffusion flames, Combust. Flame 10, 59–69 (1966).
[55] Y. C. Chen and R. W. Bilger, Stabilization mechanisms of lifted laminar flames
in axisymmetric jet flows, Combust. Flame 123, 23–45 (2000).