402 Future Directions
primary hot burned gas in a multi-stage gas turbine combustor, Proc. Combust.
Inst. 31, 3131–3138 (2007).
[16] R. J. Kee, J. F. Grcar, M. D. Smooke, and J. A. Miller, A FORTRAN program
for modeling steady laminar one-dimensional premixed flames, Sandia Rep.
SAND85-8240 (1985).
[17] G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Gold-
enberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski,
and Z. Qin, GRI-Mech 3.0, available online at http://www.me.berkeley.edu/
gri
mech/
[18] H. Fujiwara, M. Koyama, S. Hayashi, and H. Yamada, Development of a
liquid-fueled dry low emissions combustor for 300 kW class recuperated cycle
gas turbine engines, presented at the ASME Turbo Exposition, ASME paper
GT2005-68645 (2005).
[19] R. Shibata, Y. Nakayama, K. Kobayashi, M. Koyama, and H. Fujiwara, The
development of 300 kW class high efficiency, ultra low emission micro gas
turbine RGT3R, presented at the CIMAC Congress, paper 52 (2004).
[20] S. Hayashi, H. Yamada, and M. Makida, Extending low-NO
x
operating range of
a lean premixed-prevaporized gas turbine combustor by reaction of secondary
mixtures injected into primary stage burned gas, Proc. Combust. Inst. 30, 2903–
2911 (2004).
[21] R. Lebas, T. Menard, P. A. Beau, A. Berlemont, and F. X. Demoulin, Numerical
simulation of primary break-up, and atomization: DNS and modelling study,
Int. J. Multiphase Flow 35, 247–260 (2009).
[22] M. G. Pai, O. Desjardins, and H. Pitsch, Detailed simulations of primary
breakup of turbulent liquid jets in crossflow, in CTR Annual Research Briefs
(Center for Turbulence Research, Stanford University, Stanford, CA, 2008).
[23] J. Shinjo and A. Umemura, Simulation of liquid jet primary breakup: Dynamics
of ligament and droplet formation, Int. J. Multiphase Flow 36, 513–532 (2010).
[24] F. A. Williams, Recent advances in theoretical descriptions of turbulent dif-
fusion flames, in S. N. B. Murthy (ed.), Turbulent Mixing in Nonreactive and
Reactive Flows (Plenum, New York, 1975), pp. 189–208.
[25] J. A. W
¨
unning, J. G. W
¨
unning, Flameless oxidation to reduce thermal NO
formation, Prog. Energy Combust. Sci. 23, 81–94 (1995).
[26] D. Tabacco, C. Innarella, and C. Bruno, Theoretical and numerical investigation
on flameless combustion, Combust. Sci. Technol. 174, 1–35 (2002).
[27] C. K. Westbrook, Y. Mizobuchi, T. J. Poinsot, P. J. Smith, and J. Warnatz,
Computational combustion, Proc. Combust. Inst. 30, 125–157 (2004).
[28] J. B. Bell, M. S. Sheperd, M. R. Johnson, R. K. Cheng, J. F. Grcar, V. E. Beck-
ner, and M. J. Lijewski, Numerical simulation of a laboratory-scale turbulent
V-flame, Proc. Natl. Acad. Sci. USA 102, 10006–10011 (2005).
[29] C. S. Yoo, R. Sankaran, and J. H. Chen, Three-dimensional direct numerical
simulation of a turbulent lifted hydrogen jet flame in heated coflow: Flame
stabilization and structure, J. Fluid Mech. 640, 453–481 (2009).
[30] U. Maas and S. B. Pope, Simplifying chemical kinetics: Intrinsic low-
dimensional manifolds in composition space, Combust. Flame 88, 239–264
(1992).
[31] O. Gicquel, N. Darabiha, and D. Th
´
evenin, Laminar premixed hydrogen/air
counterflow flame simulation using flame prolongation of ILDM with differ-
ential diffusion, Proc. Combust. Inst. 28, 1901–1908 (2000).
[32] A. M. El Kady, A. Evulet, T. Ursin, and A. Lynghjem, Application of exhaust
gas recirculation in a DLN F-class combustion system for post-combustion
carbon capture, J. Eng. Gas Turbines Power 131, 034505-1 (2009).
[33] J. R. Maughan, K. M. Elward, S. M. De Pietro, and P. J. Bautista, Field test
results of a dry low NO
x
combustion system for the M3002J regenerative cylce
gas turbine, J. Eng. Gas Turbines Power 119, 50 (1997).