
358
Answers to Selected Exercises
3.15.5. x(
n
) = £co6(fjp5n-a?0.
4.2.1.
X(k) = {6 +
J2,
-1 -j3,-2-jl2,l-j3}. X(23) = X(3) = 1 -j3,
X(-47) = X(l) = -1 - j3
4.3.2.
{2 +
j'3,
-1 - jl, -3 + jl, -2 + j2}.
4.6.3.
Odd half-wave. X(k) = {0, -2 - j4, 0, -2 + j4}.
4.7.2.
Odd half-wave and odd. X(k) = {0,
-8,0,8}.
4.8.1.
Odd half-wave and odd. X(k) = {0, -4 - j2,0,4 + j2}.
4.12.
{13,3,9,23}.
4.15.1.
y
xh
(n)
= {10,11,20,31}. y
hx
= {10,31,20,11}.
4.23.1.
The sum of \x{n)\
2
is 45. The sum of \X(k)\
2
/4 is also 45.
5.1.2. The input vectors are {(4 +j3, -jl), (2 - j5, jl)}. The DFT vectors
are{(6-j2,2+j8),(l-jl,-l-jl)}. The DFT X(fc) is {6-j2,l-jl,2+
j8,-l-jl}.
5.5.
The input vectors are {(1 + j5, -3 - jl), (-5 +
j2,1)}.
The output
vectors are {(—4 + jl, 6 + j3), (—3
—
j2,
—3)}.
When real and imaginary
parts are swapped, we get x(n) as {7
—
j4,
—2 —
j'3,3 + j6, —
j3}/4.
5.9. The swapped input vectors are {(j'4, -6- j2),
(2
+ jA,-4 + j2), (-5 +
j4,-l),(j4,-8)}.
The vectors after Stage 1 are {(2 + j8, -2), (-4 + j2, -8 - j6), (-5 +
j8,-5),(-l +
j8,-l-j8)}.
The output vectors are {(-3 +jl6,7), (0.9497 +
j'8.364,
-8.9497-j'4.364),
(-2 + j5, -2 - j5), (-12.9497 + jO.364, -3.0503 - J12.364)}. To get the
IDFT, the real and imaginary parts must be swapped and divided by 8.
5.10. The input vectors are {(3 - j6, -1 - j2), (3,1 - j6), (2 - j2,0), (4 -
A-J6)}.
The vectors after Stage 1 are {(5 - j8,1 - ji), (7 - j2, -1 + j2), (-1 -
j2,
-1 - j2), (-7.7782 - jO.7071,0.7071 - J9.1924)}.
The output vectors are {(12 -
j'10,
-2 - jQ), (3 - j3, -1 - ;5), (-8.7782 -
J2.7071,6.7782 - jl.2929), (-10.1924 - J2.7071,8.1924 - jl.2929)}. The
output vectors must be swapped to get the DFT values in natural order.