SECTION 18.2 NONHOMOGENEOUS LINEAR EQUATIONS
||||
1153
19. ,,
20. ,,
,,
22. ,,
,,
24. ,,
25–32 Solve the boundary-value problem, if possible.
25. ,,
26. ,,
27. ,,
28. ,,
29. ,,
,,
31. ,,
32. ,,
33. Let be a nonzero real number.
(a) Show that the boundary-value problem ,
, has only the trivial solution for
the cases and .
(b) For the case , find the values of for which this
problem has a nontrivial solution and give the corre-
sponding solution.
34. If , , and are all positive constants and is a solution
of the differential equation , show that
.lim
x l ⬁
y共x兲 苷 0
ay⬙⫹by⬘⫹cy 苷 0
y共x兲cba
⬎ 0
⬍
0
苷 0
y 苷 0y共L兲 苷 0y共0兲 苷 0
y⬙⫹
y 苷 0
L
y共
兲 苷 1y共0兲 苷 09y⬙⫺18y⬘⫹10y 苷 0
y共
兾2兲 苷 1y共0兲 苷 2y⬙⫹4y⬘⫹13y 苷 0
y共1兲 苷 0y共0兲 苷 1y⬙⫺6y⬘⫹9y 苷 0
30.
y共
兲 苷 2y共0兲 苷 1y⬙⫺6y⬘⫹25y 苷 0
y共
兲 苷 5y共0兲 苷 2y⬙⫹100y 苷 0
y共3兲 苷 0y共0兲 苷 1y⬙⫺3y⬘⫹2y 苷 0
y共1兲 苷 2y共0兲 苷 1y⬙⫹2y⬘ 苷 0
y共
兲 苷 ⫺4y共0兲 苷 34y⬙⫹y 苷 0
y⬘共1兲 苷 1y共1兲 苷 0y⬙⫹12y⬘⫹36y 苷 0
y⬘共0兲 苷 1y共0兲 苷 2y⬙⫹2y⬘⫹2y 苷 0
23.
y⬘共
兲 苷 2y共
兲 苷 0y⬙⫺2y⬘⫹5y 苷 0
y⬘共
兾4兲 苷 4y共
兾4兲 苷 ⫺3y⬙⫹16y 苷 0
21.
y⬘共0兲 苷 4y共0兲 苷 12y⬙⫹5y⬘⫺3y 苷 0
y⬘共0兲 苷 ⫺1.5y共0兲 苷 14y⬙⫺4y⬘⫹y 苷 0
1–13 Solve the differential equation.
2.
3. 4.
5. 6.
7. 8.
10.
12.
13.
;
14 –16 Graph the two basic solutions of the differential equation
and several other solutions. What features do the solutions have in
common?
14.
15.
16.
17–24 Solve the initial-value problem.
,,
18. ,,y⬘共0兲 苷 3y共0兲 苷 1y⬙⫹3y 苷 0
y⬘共0兲 苷 ⫺4y共0兲 苷 32y⬙⫹5y⬘⫹3y 苷 0
17.
9
d
2
y
dx
2
⫹ 6
dy
dx
⫹ y 苷 0
5
d
2
y
dx
2
⫺ 2
dy
dx
⫺ 3y 苷 0
d
2
y
dx
2
⫹ 4
dy
dx
⫹ 20y 苷 0
100
d
2
P
dt
2
⫹ 200
dP
dt
⫹ 101P 苷 0
8
d
2
y
dt
2
⫹ 12
dy
dt
⫹ 5y 苷 0
2
d
2
y
dt
2
⫹ 2
dy
dt
⫺ y 苷 0
11.
y⬙⫹3y⬘ 苷 0y⬙⫺4y⬘⫹13y 苷 0
9.
y⬙⫺4y⬘⫹y 苷 0y⬘ 苷 2y⬙
25y⬙⫹9y 苷 09y⬙⫺12y⬘⫹4y 苷 0
y⬙⫺8y⬘⫹12y 苷 0y⬙⫹16y 苷 0
y⬙⫹4y⬘⫹4y 苷 0y⬙⫺y⬘⫺6y 苷 0
1.
EXERCISES
18.1
NONHOMOGENEOUS LINEAR EQUATIONS
In this section we learn how to solve second-order nonhomogeneous linear differential equa-
tions with constant coefficients, that is, equations of the form
where , , and are constants and is a continuous function. The related homogeneous
equation
is called the complementary equation and plays an important role in the solution of the
original nonhomogeneous equation (1).
ay⬙⫹by⬘⫹cy 苷 0
2
Gcba
ay⬙⫹by⬘⫹cy 苷 G共x兲
1
18.2