(a ∨ b) ∨ c = sup{sup{a, b}, c} = sup{a, sup{b, c}} = a ∨ (b ∨ c),
(a ∧ b) ∧ c = inf{inf{a, b}, c} = inf{a, inf{b, c}} = a ∧ (b ∧ c).
(a ∨ b) ∧ a = inf{sup{a, b}, a} = a, (a ∧ b ) ∨ a = sup{inf{a, b}, a} = a.
hL, ∨, ∧i
¿
4
L
À
hL, ∨, ∧i
a 4
L
b ⇔ a ∨ b = b ⇔ a ∧ b = a
a ∨ b = b ⇔ a ∧ b = a
¿
4
L
À ¿
4
À
a 4
L
b ⇔ a ∨ b = b ⇔ sup{a, b} = b ⇔ a 4 b.