(a
1
, a
2
, . . . , a
n
) ∈ { 0, 1}
×n
E(x
1
, . . . , x
n
)
1
{0, 1}
×n
E(x
1
, . . . , x
n
)
0 1 1
E(x, y, z) = x ∧ y ∧ z (1, 0, 1)
E(x
1
, x
2
, x
3
, x
4
) = x
1
∧ x
2
∧ x
3
∧ x
4
(0, 0, 1, 0)
E(x
1
, . . . , x
n
) n − 1
1 {0, 1}
×n
E(x
1
, . . . , x
n
) 0 1
E(x
1
, . . . , x
n
) n − k
0 ≥ k ≥ n − 1 1 2
k
{0, 1}
×n
2
k
k E(x
1
, . . . , x
n
)
E(x, y, z) = x 1 = 3 − 2 1 2
2
= 4
{0, 1}
×n
(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1)
E(x
1
, . . . , x
n
) = 1
0 = n − n 1 2
n
{0, 1}
×n
E(x
1
, . . . , x
n
) m
E
i
(x
1
, . . . , x
n
) i = 1, 2, . . . , m E(x
1
, . . . , x
n
)
1 {0, 1}
×n
1 E
i
(x
1
, . . . , x
n
) i = 1, 2, . . . , m
1 m m
{0, 1}
×n
E(x
1
, . . . , x
n
) 1
E(x, y, z) = (x∧y∧z)∨(x∧y∧z) 1 (1, 0, 1)
(0, 0, 0) E(x
1
, . . . , x
n
)
¿ À
{0, 1}
×n
1
0 1 0
E(x, y, z) = x ∨ y ∨ z (0 , 1, 0)
E(x
1
, . . . , x
n
) m 0
m {0, 1}
×n
0
E(x, y, z) = (x∨y∨z)∧(x∨y∨z)