M = sup{sup B
1
, sup B
2
}
B
1
∪ B
2
M < sup B
1
M < x
1
x
1
∈ B
1
M < x
2
x
2
∈ B
2
M < x x ∈ (B
1
∪ B
2
) M
B
1
∪ B
2
f
M ∈ A B
1
∪ B
2
f
M B
1
sup B
1
4
f
M
f
M B
2
sup B
2
4
f
M
f
M {sup B
1
, sup B
2
}
f
M < M = sup{sup B
1
, sup B
2
}
a, b, c ∈ A sup{a, b} sup{b, c}
sup{sup{a, b}, c} sup{a, sup{b, c}} sup{a, b, c}
sup{a, sup{b, c}} = sup{sup{a, b}, c} = sup{a, b, c}.
a, b, c ∈ A inf{a, b} inf{b, c} inf{inf{a, b}, c}
inf{a, inf{b, c}} inf{a, b, c}
inf{a, inf{b, c}} = inf{inf{a, b}, c} = inf{a, b, c}.
B
1
= {d, e} B
2
= {b}
sup B
2
= b sup(B
1
∪B
2
) = sup{b, d, e} = b B
1
= {d, e}
B ⊂ A a ∈ B sup B
inf{a, sup B}
a = inf{a, sup B}.
inf B sup{a, inf B}
a = sup{a, inf B}.