E m 2 ≤ m ≤ n
m m = 2
E x
1
, x
2
, . . . , x
m
f(x
1
, . . . , x
n
) = a ⊕ x
j
1
⊕ · · · ⊕ x
j
k
| {z }
⊕ x
1
x
2
· · · x
m
| {z }
E
⊕
⊕
| {z }
m
g(x, y) = f
(n)
(x, y, y, . . . , y
| {z }
m
, 0, . . . , 0
| {z }
n−m
),
f(x
1
, . . . , x
n
) x x
1
y
x
2
, . . . , x
m
0 x
m+1
, . . . , x
n
E(x
1
, . . . , x
m
)
E(x, y, y, . . . , y) = xy
m
E(x
1
, . . . , x
m
)
x
m+1
, . . . , x
n
g(x, y)
g(x, y) = a ⊕ a
1
x ⊕ a
2
y ⊕ xy,
g(x, y) /∈ L g ∈ [{f, 0}]
f
(n)
0 g
(2)
x ∧ y = xy g(x, y) x 0
,
1
,
2
∈ {0, 1}
g(x ⊕
1
, y ⊕
2
) ⊕ = xy.
g(x⊕
1
, y⊕
2
)⊕ = (a⊕a
1
1
⊕a
2
2
⊕
1 2
⊕ )⊕(a
1
⊕
2
)·x⊕(a
2
⊕
1
)·y⊕xy.