168
5.
6.
23
32
xx
y
+
⎛⎞
′
=−
⎜⎟
⎝⎠
;
22
233 (3)
32 23 2 2
xx x xx x
y
⎛⎞
++
⎛⎞
′
−−⋅=−+=
⎜⎟
⎜⎟
⎜⎟
⎝⎠
⎝⎠
=
2
36
10
x
⎛⎞
+
−
⎜⎟
⎜⎟
⎝⎠
; y′ = 0 при x = 0 и x =
6
5
; y
min
= y(3) = 0.
Вариант 3
1. 3sin2x – 2cos2x=2; sinx cosx – 2(2cos
2
x – 1) = 2; –4cos
2
x + 6sinx cosx = 0;
cos
x(6sinx – 4cosx) = 0; cosx = 0; 6sinx – 4cosx = 0;
2
n
π
+π
; tgx =
2
3
;
n ∈ Z; x = arctg
2
3
+ πn, n ∈ Z.
2. 4(2 +
3
)
–1
+ (2 +
3
)
n
= 15; 4 + (2 +
3
)
3
= 15(2 +
3
);
4 + 8 + 3
⋅ 4 3+ 3 ⋅ 3 ⋅ 2 + 3 3 = 30 + 15 3; 15 3 + 30 = 30 + 15 3.
Да, является.
3.
22
1
4
2
1
93
81
xy
xy
⎧
−=
⎪
⎨
⎪
⋅=
⎩
;
281
1
4
2
1
93
81
xx
yx
−
⎧
=−
⎪
⎨
⎪
⋅=
⎩
;
12
1
4
2
1
3
27
x
yx
⎧
−
⎪
⎨
⎪
=
⎩
; 12x = –3; x =
1
4
; y =
3
2
−
.
4. (
x + 2)
2
90x−≤; x ∈ [–3; –2] ∪ [3].
5. Найдем точки пересечения: –0,5
x
2
+x+1,5=0,5x+0,5; 0,5x
2
–0,5x–1 = 0;
x
2
– x – 2 = 0; (x + 1)(x – 2) = 0.
S =
22
2
11
( 0,5 1,5) (0,5 0,5)
xdx x dx
−−
−++ − + =
∫∫
2
2
1
(0,5 0,5 1)
xdx
−
++=
∫
2
32
1
81161
12 1 4
64 6 64 44
xx
x
−
⎛⎞
⎛⎞
=− + + =− ++ − + − = − − =
⎜⎟
⎜⎟
⎜⎟
⎝⎠
⎝⎠
79 1
42
44 4
−==
.
6. Пусть одно
x, тогда второе 2x, 3–е y. S=x
2
+4x
2
+y; 3x+y=28; y=28–3x;
S = 5x
2
+ (28 – 3x)
2
; S′ = 10x + 2(28 – 3x) ⋅ (–3) = 10x + (56 – 6x) ⋅ (–3) =
= 28
x – 56 ⋅ 3 = 0; x = 6, тогда y = 10.
Ответ: 6, 12, 10.
[
33
+
2
]