126
ПС-5
1. S
n
=
1
1
2(1)
22
n
aa
and
nn
+
+−
⋅= ⋅
; 3n
2
– 7n – 416 = 0; n = 13.
2. b
3
= b
1
q; q
2
=
3
1
b
b
; q =
11
;
22
; S =
2
1
1
2
−
= 4; S =
4
3
.
3. 0,1(076923 = 0,1 + S
n
; S
n
— сумма геометрической прогрессии;
b
1
= 0,0076923; q =
1
1000000
; S =
1
1
1 130
b
q
=
−
; 0,1(076923) =
7
65
.
ПС-6
1. а)
2
sin 2 cos( ) cos 2sin cos
1 cos 2 cos( ) 1 cos 1
2cos
απ+α−ααα
⋅=⋅=
+α π−α−−α−
α
sin
tg
cos 1
α
=
+α
;
б)
cos 2sin 3 cos5 2sin 3 sin 2 2sin 3
sin 2cos3 sin 5 (2cos3 sin 2 2cos3 )
α− α− α α α− α
=
α+ α− α − α α+ α
= –tg3α.
2. а)
2cos cos (cos cos sin sin ) cos( )
cos cos sin sin 2sin sin cos( )
αβ− αβ−αβ α−β
=
αβ+αβ− αβ α+β
;
б)
( cos 2 sin 2 )( sin cos )
cos sin 3
−α−α−α−α
α+ α
= –1.
ПС-7
1. а) sin3x ctgx = 0; sin3x = 0; x =
3
n
π
±
, n ∈ Z; ctgx = 0; x =
2
+ πr,
r
∈ Z; sinx ≠ 0; x ≠ πm, m ∈ Z, тогда
2
n
π
+π
;
3
n
π
±+π
;
б) sin4x – sin2x = sinx; 2sinx cos3x = sinx; cos3x =
1
2
; sinx = 0;
3x =
2
3
k
π
±+π; x = πn, k, n ∈ Z; x =
2
93
k
π
+π.
2. а) –sin3x sin4x +
1
2
< cos3x cos4x; –(sin3x sin4x + cos3x cos4x) <
1
2
−
;
cosx >
1
2
, x ∈ 2; 2
33
nn
ππ
⎛⎞
−+π +π
⎜⎟
⎝⎠
;
б) tg
3
5
63
x
π
⎛⎞
+≥
⎜⎟
⎝⎠
;
5
662
nx n
πππ
π≤ +<+π
; ;
5155
nn
πππ
⎞
∈+
⎟
⎢
⎠
; n ∈ Z.
ПС-8
1. а)
2
680
(4 ) 5
(4 ) 0
xx
x
x
⎧
−+≥
⎪
−≠
⎨
−>
⎪
⎩
;
(2)(4)0
1
4
xx
x
x
−≥
⎧
⎪
≠−
⎨
<
⎪
⎩
, x ∈ (–∞; –1) ∪ (–1; 2];