Подождите немного. Документ загружается.
41
,
b
a
k += 127,7
,
min
k
=8.
8
min
== kk
,
1,0=
a
;
b 10
.
2.4. , ,
S
,
O
S
.
.
?
.
:
...
222222
...
222
7
6
55
4
321
54
321
++−++−+−=
=++−+−=
21
≈
11 +−
≈
mm
m
AA
,
;
0
A
.
.
( .2.14).
3
,
.
3
(
3
′
).
, ,
,
0
′
.
0
03
≈
′
+
′
=
.
42
2.5.
,
.
1
I
.
,
4
1
I
.
. . 2.15
1
:
01
2=
,
0
-
:
I
I
1
0
=
. ,
0
.
ϕ
=∆
.
,
,
,
ϕ
=∆
.
. 2.16:
( )
L−=∆
ρ
ϕ
2
( )
ρ
=− L
.
. 2.16
2
2
2
2
xLxRR +−=−−
ρ
;
22
22 LLxRx −−=
ρ
;
( )
( )
LR
LL
LR
L
x
+
+−
=
+
−
=
22
22
ρρρ
L−
ρ
<λ,
LL 2
;
;2
2
2
22
xRxxRRr −=−−=
2
x
,
Rxr 2
2
=
.
:
LRL
r
+
=
2
2
,
, ,
43
LR
LR
r
+
=
λ
1
,
2
1
2
2
r
L
r
λ
=
.
( )
ρ
=− L
,
2
1
2
r
r =
;
3
1
r
r =
.
1,73 .
2.6.
0
I
λ
.
,
b
b(
>>
).
.
.
,
,
0
I
;
0
A
. ( .2.17).
,
,
.
.
2.18.
0
.
.
O
( . 2.17)
( )
b−=∆
ρ
ϕ
2
;
222
rb =−
ρ
;
b
r
b
+
=−
ρ
ρ
2
.
44
<<
b
bb 2
r
2
2
π
ϕ
=∆
,
, ,
. . 2.18 :
sin2
0
= AA
;
r
AA
λ
π
sin2
2
0
=
;
=
b
r
II
λ
π
2
sin4
2
0
.
2.7.
0
I
, ,
. 2.19. ,
, .
,
O
.
,
b
, λ.
.
,
,
.
.
( . 2.20)
(
1
)
(
2
):
21
+=
.
2.6,
1
:
r
λ
π
sin2
2
01
=
.
2
A
,
45
,
0
(
0
I
),
(
1
)
(
3
)
310
+=
.
03
=
( . . 2.20).
2
,
, ,
3
,
03
2
==
.
α
os
21
2
1
2
2
2
2−+=
,
α
=
.
2.6
r
λ
π
ϕ
2
=∆
,
2
sin
22
cos
ϕϕπ
∆
=
∆
−
,
)
2
(sin2
2
2
2
sin4
4
2
2
0
0
2
22
0
2
0
2
b
r
A
A
b
r
A
A
A
λ
π
λ
π
⋅−+=
+=
b
r
II
λ
π
2
sin2
4
1
2
2
0
.
2.8. λ
,
.
?
.
.
( . 2.21).
0
.
: ,
46
.
1
.
.
2
.
021
=+
. ,
.
1−nh
,
h
-
.
:
λ
ϕ
2
=∆
1−nh
.
1
.
12
+=
,
1
2
.
π
ϕ
2
5
+=∆
,
,...2,1,0
,
mnh
π
λ
2
5
)1(
2
+=−
.
)1(2
4
5
2
−
+
=
n
m
h
λ
.
2.9.
(2.7)
.
.
b
.
,
( .
2.22).
ϕ .
( . 2.6).
47
.
. ,
.
ϕ=0
( . 2.23 ).
.
0
.
0
, ϕ.
Ο.
ϕ (
)(
k
(2.1)),
B
0
. . 2.22 ,
sinb
,
ϕ
λ
λ
sin
22
b=∆=∆Φ
.
. 2.23
∆Φ
=
0
A
R
;
2
sin
2
sin2
0
∆Φ
=
∆Φ
=
A
RA
.
,
ϕ
λ
π
ϕ
λ
π
sin
sinsin
0
a
a
AA =
.
,
48
2
2
0
sin
sinsin
=
ϕ
λ
π
ϕ
λ
π
a
a
II
,
0
I
- (
ϕ
=0).
,
,
, ( . 2.23).
,
2.10.
5,0
b 10
0
0
30=
θ
.
,
.
. ,
ϕ.
,
( ).
. ,
0
sinsin
bb
.
0
, ,
( ), 0; ,
0
.
( )
( 2.9):
.
0
sinsin
θ
ϕ
+=
;
55,0sin
;
0
37,33=
ϕ
.
49
( ) :
θϕ
−=
0
sinsin
;
45,0sin
;
0
74,26=
ϕ
.
2.11. ,
,
.
.
md
sin
. (2.12)
:
kb
sin
; (2.11)
kd
ϕ
′
=sin
. (2.13)
1
N ,
(2.13).
.
3=
d
, (2.12)
mb
sin3
;
λϕ
sin
m
b =
.
,
, (2.11),
. , 3- , 6- , 9- … .
, . 2.25.
2.12.
600
d 0,3
,
20000
N
.
.
50
. ,
m- ( . (2.13));
md
λϕ
−=
1
sin
,
md
λϕ
+=
2
sin
.
( )
d
ϕϕ
2
sinsin
12
=−
;
2
cos
sin2
1212
=
.
N
12
ϕϕδϕ
−=
,
ϕ
ϕϕ
=
+
21
(
δϕ
m- ;
ϕ
- ,
m- );
os
ϕδϕ
2
1
=
, ,
md
sin
, :
5
2
2
2
101,1
1)
2
(
1
4
1
2
−
×=
−
=
−
=
λ
λ
δϕ
d
N
d
dN
.
2.13.
l 5,6
, 200 .
8,670
,
,
015,0
.
:
) ;
) ,
8,670
.
.
mN=
.
,
- .
,
.44,3
20065015,0
8,670
=
⋅⋅
==
ln
m
δλ
, :
4
m
.
min
δλ
, ,
,