124
2.18. ) h=0,6(2m+1) ; )h=0,3(2m+1) .
2.19. )
0
8,...,2,1,0),
4
1
(
)1(
IIkk
n
h ==+
−
=
. )
,...2,1,0);
3
(
=+
−
= kk
h
2.20. )
0
9,...,2,1,0),
1
(
IIkk
h ==+
−
=
. )
0
,...,2,1,
IIkk
h ==
−
=
.
2.21. )
)
3
(2,1)
3
(
kk
h +=+
−
=
;
,...1,0),223(
0
=+= kII
)
)
7
(2,1 kh +=
;
).223(
0
−= II
)
kh 2,1
)
3
(2,1 += kh
.
2.22.
k
fb
bfk
r 9,0=
−
=
λ
; k=1,2,3,…
2.23. )
,...3,2,1,4,2
0max0
=≈= kIIkh
λ
)
0),12(
min0
Ikh
.
2.24.
.143
2
5
==
ϕλ
b
2.25.
2;43
2
=∆⋅=∆
′
≈=∆
ϕ
ϕ
Fx
.
2.26.
6,0
2
1
1
2
=
∆
+
=
x
F
k
b
λ
.
2.27.
11,
2
)12( =≤+= N
b
kN
(k – ).
2.28. , ,
,
(400 ÷ 760 ), a ≈ 0,7 .
2.29.
40
2
=
∆
=
F
bb
x
, 40 .
2.30.
5
2
==
l
A
.
2.31.
5,0
12
==
ba
λ
.