Подождите немного. Документ загружается.
111
,
0
30=
α
.
0
6000=
λ
0
I
.
, .
3.41.
,
,
,
ΟΟ .
ΟΟ
0
45
.
,
.
,
δ .
: )
; )
⊥
.
3.42.
,
, , 1,50
.
0
45
.
.
0,55 – 0,66 ?
0,0090.
3.43. ,
, 0,25
53,0
.
?
,
.0090,0
3.44. ,
, ,
0
45
.
643
1
=
λ
,
564
2
?
.0090,0
112
3.45. , ,
, ,
, , ,
. ,
min
d
.
589
1
=
λ
49654,1
1
=
6,589
2
65843,1
2
.
3.46.
, .
0
45
.
,
0
1
6563=
λ
,
0
2
4102=
λ
.
009,0
.
3.47.
02,0
1
=d
05,0
1
n
.
02,0
2
d
025,0
2
=∆n
.
? λ.
3.48.
0,59
0
30=
θ
.
,
.
,
0,15
.
,
.
3.49.
,
, .
,
113
30,0
,
17
. / .
3.50.
, ,
.
,
436 ,
497 – .
41,5 31,1
. / .
3.51.
, 0,5
. ,
589
:
)
) .
3.52.
d
,
,
(
5533,1=
,
5442,1
,
5
105
−
⋅=
λ
)
3.53. ,
1/4
, ,
, :
5941,1
1
=
5887,1
2
?
3.54. ,
, .
,
.
2
m
.
k
I
, ,
I
, .
114
3.55. ,
, .
,
.
0
30=
α
20%.
k
I
, ,
I
.
3.56.
, .
. , ,
,
45 .
m,
. d
ma
=0,05 , n =1,54, n
e
=1,55,
=5000
0
.
3.57.
0
45
.
.
3.58.
.
3.59.
,
?
?
3.60. ,
, ,
.
3.61. ,
0
30=
β
.
3.62. ,
(
5,1
), .
115
7342
0
′
=i .
.
3.63.
, .
=97
. ,
.
3.64. ,
5,1
,
ϕ
,
. ,
, ?
3.65.
(
544,1
),
? - .
3.66.
6,1
.
θ,
. α = 30 .
3.67.
1
.
,
.
1
,
.
3.68.
. ϕ
.
36.69.
54,1
. γ
.
116
36.70.
, .
.
1,58.
3.71.
2
d
,
,
,
0
53
. ,
, ,
?
3.72.
3
1
28,0=
,
,
, ,
1
=32 .
2
,
0
2
24=
ϕ
.
3.73. , 8 ,
.6,136
0
=
ϕ
01,1
/
3
.
[α] .
3.74. d
1
=1 ,
,
1
=20 . :
1) d
2
,
“ ” ,
;
2) l
4,0= ,
. [ ]
0,665
3
⋅
.
3.75.
0
40=
ϕ
.
117
15
l
. [α]=66,5
3
⋅
.
.
3.76. 1 ,
,
.
0
20
.
d
?
3.77.
-
0
5893=
λ
, ,
0
7,21
1 ?
3.78.
-
0
5893=
λ
30
l
,
0
?
3.79. ,
0
6090=
λ
π.
10
7,29
−
.
3.80. 589
,
500 / . ,
50 .
.
3.81.
, .
30
l
. ,
3
105,56 ⋅=Η
/
015
0
1
′
+=
ϕ
023
0
2
′
−=
ϕ
.
118
.
I. .
1.1.
maxmin
029,0 II =
.
1.2.
9
21
II
.
1.3.
37,1
12
=II
.
1.4.
2
21
II
1.5. ) max:
θ
=
; ) min:
,0
.
1.6.
2
;
θ
=
.
1.7. ) max:
,0
; ) min:
θ
=
.
1.8. ) max:
π
θ
,
,0=
; ) min:
2
;
θ
=
.
1.9. ) max:
2
;
θ
=
; ) min:
π
θ
,
,0=
.
1.10. ) max:
0000
6,138;5,104;5,75;4,41
) min:
00
180;120
.
1.11. max: =0
0
; 60
0
; 90
0
; 120
0
; 180
0
; min: =41.4
0
; 75.5
0
; 104.5
0
; 138.6
0
;
1.12.
00
8,131;2,48=
θ
.
1.13. ;
l
3 ;
3 .
1.14.
nhl
0,2
)1(
=
=∆
.
1.15. d = 72 .
1.16. m = 10.
1.17.
.08.1
5
l
x ==
1.18. =
π
λ
5.11
2
=
dx
1.19.
.0
max
=
J
J
1.20. J=0.23 J
0
119
1.21. )
0
J
J =
)
0
3
JJ =
1.22. ) J=0.72J
0
) J=0.022J
0
) J=0.37J
0
) J=0.55J
0
1.23. n=1.000377
1.24. n=1.000865
1.25. =1.4 .
1.26. R=0.27
1.27.
=+=∆
2
33
2
2
2
1
λλ
l
h
;
λ
10)1(
12
=−−∆=∆ dn
.
1.28.
6.0
)1(
2
=
−
=
η
λ
l
hx
.
1.29.
4,0
h
.
1.30.
12 =∆
=∆ x
h
l
λ
, .
1.31.
).21(2 hkl
k
λρ
−=
1.32.
4;1085,5
)(
)(
7
2
22
=−⋅=
−
−
=
−
mk
mkl
h
km
ρρ
λ
.
1.33.
)21( −
=∆
k
h
h
.
1.34.
557,0
)(
=
=∆
α
ar
.
1.35.
478,3
)ar(9
′
≈
′
=
=
α
.
1.36.
45,1)1(2,01)1(
andn
,
515,0
)1(2
)(
=
−
=∆
an
ba
x
θ
;
11
)(
)1(4
,8,5)1(2
22
=
+
−
=
∆
==−=
ba
abn
x
X
NbnX
λ
θ
θ
.
1.37.
la
lfflL
x
fl
al
d
fl
lf
b
=∆
−
=
−
=
,,
.
1.38.
64,02
.
120
1.39.
20
)1(4
max
=
−
=
θ
n
l
b
;
40
)1(
max
=
=
λ
nl
N
; ,
max
2bb ≥
.
1.40.
,...2,1,0,
4
)21(
=
= m
n
m
d
1.41.
23,0
1
1
==
d
λ
;
15,1
5
1
2
==
d
.
1.42. d ∼ 0,5 .
1.43.
122,0
sin4
22
min
=
−
=
α
M
n
d
.
1.44.
6.14
2
1
=≈
α
n
d
;
1.45.
1,1
sin2
22
=
−∆
=
θ
nt
v
/ .
1.46.
1,
sin4
22
=
−
−
= m
nd
α
λ
; ) λ
) λ=538 .
1.47.
0
22
3
sin
=
−
=
αλ
δα
n
.
1.48.
.
)(4
)(
2
22
iknl
drr
ki
−
−
=
λ
1.49.
1,3
2
l
.
1.50.
5
2
0
==
n
m
/ .
1.51.
12
lN
d ==
.
1.52.
35,1
1 =
+=
m
n
.
1.53.
,...2,1,22,22
2
1
min
=
′
⋅=
′
== kk
α
λ
α