Файлы
Заказать работу
Обратная связь
Для правообладателей
Найти
Рудакова Л.И., Соколова Е.Ю. Практический курс физики. Волновая оптика
Файлы
Академическая и специальная литература
Физика
Оптика
Назад
Скачать
Подождите немного. Документ загружается.
61
(
)
0
1
1
2
1
I
I
η
−
=
.
0
I
-
,
1-
;
2
1
,
;
η
-
.
(
)
α
η
2
1
2
cos
1
−
=
I
I
,
α
-
.
(
)
(
)
25
,
4
cos
1
2
1
1
I
I
cos
I
1
2
1
I
2
2
2
0
2
0
2
2
=
−
=
−
=
α
η
α
η
.
3.2.
.
4
=
,
0
75
=
ϕ
,
.
.
.
.
:
0
1
I
I
2
1
I
+
=
.
0
75
=
ϕ
(
)
ϕ
2
0
2
os
I
I
2
1
I
+
=
.
2
1
nI
I
=
.
62
(1)
(2)
(3),
(
)
ϕ
2
0
cos
n
1
I
1
2
1
I
−
−
=
.
P
I
,
:
%
6
7
%
100
I
I
I
0
=
⋅
+
=
.
3.3.
,
,
.
,
,
ϕ
k
3
=
.
k
I
,
I
.
.
,
,
,
,
,
,
2
,
,
k
max
I
2
1
I
I
+
=
.
,
,
,
,
,
-
k
I
2
1
:
k
min
I
2
1
I
=
.
k
k
I
2
1
k
k
I
2
1
I
=
+
63
.
4
2
1
9
2
1
k
I
I
k
2
1
2
1
I
I
.
I
k
2
1
I
2
1
I
2
k
2
k
k
2
k
=
−
=
−
=
=
+
=
+
3.
4.
P
.
,
.
I
P
,
0
I
.
?
,
.
.
,
,
1
2
.
0
.
,
,
0
1
2
=
,
0
2
2
=
.
,
,
1-
,
,
.
,
1
2
2
π
.
j
wt
s
in
E
2
i
w
t
c
os
2
j
E
i
0
.
0
2
1
⋅
⋅
⋅
+
⋅
⋅
=
⋅
+
⋅
=
.
P
,
I
~
2
2
2
E
⋅
=
0
I
2
I
=
.
64
3.5.
4
λ
,
.
0
I
.
,
.
0
90
.
I
?
.
1
,
2
,
.
0
-
.
,
,
0
90
,
2
π
1
.
)
wt
cos(
E
E
wt
cos
E
wt
sin
E
wt
cos
E
)
2
wt
cos(
2
2
2
1
2
1
2
1
ϕ
π
+
+
=
+
=
=
+
+
=
,
0
2
E
E
=
,
0
1
2
E
E
=
.
0
2
0
2
0
2
2
2
1
5
4
E
E
E
E
E
E
=
+
=
+
=
.
.
.
E
,
0
5
I
I
=
.
3.
6.
,
,
,
.
.
,
:
)
65
,
α
;
)
,
,
.
.
)
,
wt
cos
=
w
t
a
y
sin
=
.
,
δ
,
wt
cos
=
)
sin(
δ
+
=
wt
a
y
.
.
s
in
cos
s
in
cos
)
sin
si
n
(cos
)
sin
(
si
n
cos
cos
wt
a
wt
a
wt
a
wt
a
⋅
⋅
⋅
+
+
⋅
+
=
=
+
⋅
⋅
+
⋅
⋅
=
δ
α
δ
α
α
δ
α
α
ξ
(
)
(
)
[
]
(
)
.
sin
2
sin
1
a
cos
sin
sin
sin
cos
a
I
2
2
2
2
δ
α
δ
α
δ
α
α
⋅
+
=
⋅
+
⋅
+
=
)
δ
,
0
2
cos
=
α
,
.
.
.
4
3
,
4
π
π
α
=
δ
sin
>0
,
.
δ
sin
<0
-
.
3.
7.
,
0
30
=
α
.
,
2
λ
.
β
66
,
?
.
,
,
.
.
.
1
N
.
2ϕ
,
ϕ
-
,
.
,
1
AON
OB
N
1
.
β
:
.
3
0
45
15
4
2
2
2
;
6
0
15
45
2
4
2
2
0
0
0
2
0
0
0
1
=
−
=
−
=
−
=
=
+
=
+
=
+
=
π
α
π
α
β
α
π
π
α
β
3.
8.
,
,
0
I
.
4
λ
(
.
.).
.
I
.
.
,
– 1,
–
2.
67
.
wt
sin
E
wt
cos
E
E
;
wt
sin
E
wt
cos
y
2
x
2
2
y
1
1
1
⋅
+
⋅
=
⋅
+
⋅
=
2
π
.
.
.
,
,
1
1
,
2
-
y
2
,
.
.
+
⋅
+
⋅
=
′
⋅
+
+
⋅
=
′
2
wt
sin
E
wt
c
os
E
E
;
wt
sin
E
2
wt
cos
E
E
y
2
x
2
2
y
1
x
1
1
π
π
(
)
(
)
.
wt
cos
E
E
E
;
wt
cos
E
E
E
y
2
x
2
2
y
1
x
1
1
⋅
+
=
′
⋅
+
−
=
′
P
1
E
′
2
E
′
:
(
)
(
)
wt
cos
E
E
wt
sin
E
E
E
E
E
y
2
x
2
y
2
x
1
2
1
⋅
+
+
+
−
=
′
+
′
=
′
.
.
:
0
2
1
2
1
2
1
E
E
y
y
=
=
=
=
,
(
)
(
)
.
j
wt
sin
wt
cos
E
2
1
i
wt
sin
wt
cos
E
2
1
E
0
0
+
+
−
=
′
68
),
4
wt
cos(
2
wt
sin
wt
cos
)
4
wt
cos(
2
wt
sin
w
t
cos
π
π
+
=
−
−
=
+
,
.
j
4
wt
c
os
i
4
wt
c
os
2
E
2
1
E
0
−
+
+
=
′
π
π
ω
π
4
+
=
′
t
t
,
)
j
t
w
s
i
n
i
t
w
(cos
2
E
E
0
⋅
′
+
⋅
′
=
′
,
,
2
2
0
2
0
I
E
I
=
≈
,
2
0
I
I
=
3.9.
,
,
.
0
45
.
d
50
,
0
=
.
60
,
0
50
,
0
−
,
,
?
.
0090
,
0
=
∆
.
–
1
Π
(
1
).
:
0
69
.
0
45
=
α
.
,
n
d
∆
=
∆
λ
π
ϕ
2
.
2
)
1
2
(
π
ϕ
+
=
∆
m
.
,
(
)
.
2
1
2
π
ϕ
+
=
∆
.
,
:
1
2
4
2
)
1
2
(
2
+
∆
=
+
=
∆
m
n
d
m
n
d
λ
π
λ
π
.
,
)
1
2
(
10
180
7
+
⋅
=
−
m
λ
(
).
(2m
+1
)
= 31
7
1
10
8
1
,
5
−
⋅
=
λ
33
……
7
2
10
4
5
,
5
−
⋅
=
λ
35
…….
7
3
10
1
4
,
5
−
⋅
=
λ
3.10.
.
5
.
3
0
=
θ
0
45
.
55
0
=
λ
.
70
0
,
1
=
∆
.
.
.
1
Π
1
Π
.
.
2
1
.
:
–
.
(
0
E
)
,
′
.
′
(
).
,
n
d
∆
=
λ
π
δ
2
,
d
-
.
2
Π
0
E
2
Π
(
2
3
).
2
3
,
δ
,
π
.
2
Π
π
λ
π
ϕ
+
∆
=
∆
n
d
2
.
,
,
.
4
π
1
Π
2
Π
,
.
I
ϕ
∆
+
=
cos
2
2
1
1
I
I
I
,
1
I
-
.
‹
1
2
...
4
5
6
7
8
9
10
...
13
14
›