Подождите немного. Документ загружается.
11
. ,
.
Ο .
1,
:
l =
1
.
;
).()(
2
OBnl +=
(
) . ,
).()()(nll
12
:
[ ]
;)cos()(
12
βα
−−=∆=−
nll
;
cos
β
d
=
.sinsincoscos)cos(
n
sin
sin
=
β
:
sin
sin
β
=
,
[ ]
.548,0
2
3
25,025,21
cossinndcos
n
sin
n
cos
1
d
;sinn
n
1
n
sin
1cos
22
2
22
2
2
=−−=
=−−=−−=
−=−=
ααα
α
β
∆
α
α
β
12
1.2.
3
=n
, .
λ
2
=d
,
.
.
,
0
I
.
.
:
-
( 1) –
( 2).
;
10
2=
,
1
-
. ,
10
4II =
.
1 2
),1(
ndddn
, ,
).1(
2
−=∆ nd
λ
ϕ
,
.
2
ϕ∆
=
.
,
1
0
1
I
II ==
13
1.3.
N
:
),)1(cos(
αξ
−+= kwta
k
k
-
,N,...,2,1k
- k -
k −−1
.
.
. ,
.
. ,
ek
ek
)1(
,
. ,
,
N
.
. 4.15.
.
,
.
,
.
. :
;
sin
R
a
=
2sin2
α
a
R =
.
).
sin(
N
R=
,
sin
2
sin
α
α
=
N
a
A
.
1.4.
d
.
.
)(xI
, , ,
.
O
, .
xd,
<<
.
14
.
d
<<
. (1.3),
:
)cos(12
121
II
,
),rr(
2
2112
−=−
λ
ϕϕ
(1.6),
21
.
21
rr −
. 4.16.
.
ACS
1
BCS
2
( . 1.10)
222
1
)
(
d
xLr ++=
;
222
2
)
(
d
xLr −+=
.
,
xdrr 2
2
2
2
1
=−
,
.
2
21
21
rr
xd
rr
+
=−
.
21
xd
rr =−
d
ϕϕ
2
12
=−
,
( )
xd
I
xd
IxI
λ
λ
2
11
cos4)
2
cos1(2 =+=
.
Lm
x
=
max
L
mx
)12(
min
+=
,
L
x
=∆
.
. 4.10.
. 1.10
15
1.5.
=d
.
:
)
,
( . . 1.11);
)
.
.
.
(
,
>>
d
),
AC
.
cosdB
.
(1.6)
.cos
2
θ
ϕϕϕ
d
BA
+=−=∆
) (1.4)
m
πθ
λ
2cos
2
=+
,
14cos
m
.
0
m
1cos
.
.
(1.5)
πθ
λ
)12(cos
2
+=+ m
.
1cos,0,14cos
mm
.
, 0
.
)
BCAC
,
. 1.11 . 1.12
16
. , (1.3),
( )
),1cos
2
cos1(2cos22
111
++=∆+=
θ
π
ϕ
IIII
1
I
- .
)(
I
).
cos
(cosI4I
22
1
=
,
1
I
,
, .
:
,I4II
1max
0
θ
=
,I38,0
4
3
2
cosII
max
2
max
==
π
θ
=
,I5,0
2
1
2
cosII
max
2
max
==
π
2
θ
=
,I92,0
4
1
2
cosII
max
2
max
==
π
max3max2
max1max
I92,0,I5,0
,I38,0,I
==
1.6.
,
,
. .
5,1
n
;
7
106
−
×=
λ
.
d
?
.
,
,
. 4.14.
. 1.14
17
.
21
λ
mrr =−
λ
5
21
=−rr
.
; ,
ll
21
=
.
11
rl =
.
d
)(
2
dr −
.
,
)1(
222
ndrdrndl
.
:
);1(
21
ndrr
λ
5)1(
21
=−=− ndrr
.
5
=
d
.
d
6
106
−
⋅=
.
1.7.
λ
.
d
,
.
? ?
. ,
. 4.9.
.
- .
l
τ
=
- .
, ,
, ,
. ,
.
, ,
, .
, ,
rr
t
21
−
=∆
.
18
t
>
τ
(
21
rr −
>
l
),
, .
, 0<
t
<
( ).
,
.
,
.
-
rr
τ
=
−
21
. (1.4)
Lrr
21
−
=
,
.
=
L
. ν=
λ
c
λ∆
∆
2
c
v =
.
( .(1.13))
≈
1
τ
, :
.
L
λ
≈
2
, ,
x
N
=
.
1
,
L
=∆
- .
λ
∆
≈= 22
1
NN
, .
1
λλλ
∆+=
12
.
. λ
:
L
=∆
. .
( . . 1.16).
1
λ
2
λ
. (
1
λ
2
λ
).
,
. ,
19
um
1
1
λ
:
12
11
1
mm
,
=m
.
,
== mN
1
. (
,
, , ,
).
1.8. ,
R 1
.
7
105
−
×=
λ
.
d 1,0
.
,
.
. ,
.
;
,
.
.
. . 1.17 ,
( ) (
. 4.16.
20
). ( ).
,
, . . ,
.
,
.
. , 1.4
2
1
2
2
2
llR
d
=+− ;
2
2
2
2
2
llR
d
=++
.
1- 2- ;
dRllll 2
1212
=+−
.
lll 2
12
,
dR
ll =−
12
.
,
:
,
2211
rlrl +=+
1221
llrr −=−
.
dx
rr =−
21
,
dR
dx
=
,
l
RL
x =
.
RL2
2 =
. ,
xx
2
,
x
-
,
L
=∆
.
,
,
:
2
≤
;
L
RL
2
≤
.
Rd
l
4
≥
.
l 80
min
≈