Nielsen, C. H. and Sigurdsson, H. (1981) Quantitative methods for electron microprobe
analysis of sodium in natural and synthetic glasses. Amer. Mineral. 66 547–52.
Oliveira, D. P. S. de, Reed, R. M., Milliken, K. L. et al. (2003) (Meta)cherts,
(meta)lydites, (meta)phthanites and quartzites of the se
´
rie negra (Crato-S.
Martinho), E. Portugal: towards a correct nomenclature based on mineralogy
and cathodoluminescence studies. Cie
ˆ
ncias da Terra, special issue no. V, 29.
Pagel, M., Barbin, V., Blanc, P. and Ohnenstetter, D. (2000) Cathodoluminescence in
Geosciences (Berlin: Springer ).
Patsoules, M. G. and Cripps, J. C. (1983) A quantitative analysis of chalk pore
geochemistry using resin casts. Energy Sources 7 15–31.
Perkins, W. T. and Pearce, N. J. G. (1995) Mineral microanalysis by laserprobe
inductively coupled plasma mass spectrometry. In Microprobe Techniques in the
Earth Sciences, ed. P. J. Potts, J. F. W. Bowles, S. J. B. Reed and M. R. Cave
(London: Chapman and Hall) pp. 291–325.
Pingitore, N. E., Meitzner, G. and Love, K. M. (1997) Discrimination of sulfate from
sulfide in carbonates by electron probe microanalysis. Carbonates Evaporites 12
130–3.
Potts, P. J. and Tindle, A. G. (1989) Analytical characteristics of a multilayer
dispersion element (2d =60A
˚
) in the determination of fluorine in minerals by
electron microprobe. Mineral. Mag. 53 357–62.
Potts, P. J., Tindle, A. G. and Isaacs, M. C. (1983) On the precision of electron
microprobe data: a new test for the homogeneity of mineral standards. Amer.
Mineral. 68 1237–42.
Prior, D. J., Boyle, A. P., Brenker, F. et al. (1999) The application of electron
backscatter diffraction and orientation contrast imaging in the scanning electron
microscope to textural problems. Amer. Mineral. 84 1741–59.
Prior, D. J., Trimby, P. W., Weber U. D. and Dingley, D. J. (1996) Orientation
contrast imaging of microstructures in rocks using forescatter de tectors in the
scanning electron microscope. Mineral. Mag. 60 859–69.
Purvis, K. (1991) Fibrous clay mineral collapse produced by beam damage during
scanning electron microscopy. Clay Mineral. 26 141–5.
Pyman, M. A. F., Hillyer, J. W. and Posner, A. M. (1978) The conversion of X-ray
intensity ratios to compositional ratios in the electron probe analysis of small
peaks using mineral standards. Clays Clay Mineral. 26 296–8.
Reay, A., Johnstone, R. A. and Kawachi, Y. (1989) Kaersutite, a possible
international microprobe standard. Geostand. Newslett. 13 187–90.
Reed, R. M. and Milliken, K. L. (2003) How to overcome imaging problems
associated with carbonate minerals on SEM-based cathodoluminescence
systems. J. Sed. Res. 73 328–32.
Reed, S. J. B. (2000) Quantitative trace analysis by wavelength-dispersive EPMA.
Mikrochim. Acta 132 145–51.
Reed, S. J. B. and Buckley, A. (1996) Virtual WDS. Mikrochim. Acta Suppl. 13,
479–83.
(1998) Rare-earth element determination in minerals by electron-probe
microanalysis: application of spectrum synthes is. Mineral. Mag. 62 1–8.
Rehbach, W. P. and Karduck, P. (1992) Mikrochim. Acta Suppl. 121 153–60.
Reid, A. F., Gottlieb, P., MacDonald, K. J. and Miller P. R. (1985) QEM*SEM image
analysis of ore minerals: volume fraction, liberation, and observational
variances. In Applied Mineralogy, ed. W. C. Park, W. M. Hausen and R. D. Hagni
(New York: Metallurgical Society AIME) pp. 191–204.
References 187