research into new materials, new replication
techniques, and new lithographic approaches
exploiting the short-wavelength nature of
X-rays. Questions such as ‘how small can we
really get?’ and ‘can we overlap our top-down
technologies with the typical bottom-up approach
in nano-technology? At which dimensions?’ are
currently being addressed. Making devices much
smaller than is possible today will open up entirely
new fields in research and applications.
REFERENCES
[1] E.W. Becker, W. Ehrfeld, P. Hagmann, A. Maner,
D. M
€
unchmeyer, Fabrication of microstructures with
high aspect ratios and structural heights by synchro-
tron radiation lithography, galvanoforming, and
plastic moulding (LIGA process), Microelectronic
Engineering 4 (1986) 35–36.
[2] R.K. Kupka, F. Bouamrane, C. Cremers, et al., Micro-
fabrication: LIGA-X and applications, Appl. Surf. Sci.
164 (2000) 97–110.
[3] J. Hruby, LIGA technologies and applications, MRS
Bulletin 26 (4) (2001) 337–340.
[4] C.K. Malek, V. Saile, Applications of LIGA technol-
ogy to precision manufacturing of high-aspect-ratio
micro-components and -systems: a review, Micro-
electronics J. 35 (2004) 131–143.
[5] V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev,
I. Snigireva, S. Achenbach, V. Saile, Fabrication and
preliminary testing of X-ray lenses in thick SU-8 resist
layers, Microsystem Technologies 10 (2004) 716–721.
[6] C. Becnel, Y. Desta, K. Kelly, Ultra-deep X-ray
lithography of densely packed SU-8 features: I. An
SU-8 casting procedure to obtain uniform solvent
content with accompanying experimental results,
J. Micromech. Microeng. 15 (2005) 1242–1248.
[7] L.J. Guerin, The SU8 Homepage, http://www.geoci-
ties.com/guerinlj/.
[8] C. Cremers, F. Bouamrane, L. Singleton, R. Schenk,
SU-8 as resist material for deep x-ray lithography,
Microsyst. Technol. 7 (2001) 6–11.
[9] M. Stewart, H. Tran, G. Schmid, T. Stachowiak,
D. Becker, G. Willson, Acid catalyst mobility in resist
resin, J. Vac. Sci. Technol. B 20 (2002) 2946–2952.
[10] H. Winick, Synchrotron Radiation Research, Chap-
ter 2: Properties of synchrotron radiation, Plenium
Press, New York (1980).
[11] G. Margaritondo, Introduction to Synchrotron Radi-
ation, Chapter 2.2: Bending magnet radiation,
Oxford University Press, New York, Oxford (1988).
[12] D. Attwood, Univ. California (Berkeley), Intro Syn-
chrotron Radiation, Bending Magnet Radiation,
EE290F (Feb. 8, 2007).
[13] A. El-Kholi, P. Bley, J. G
€
ottert, J. Mohr, Examination
of the solubility and the molecular weight distribu-
tion of PMMA in view of an optimised resist system
in deep etch x-ray lithography, Microectronic Engi-
neering 21 (1983) 271–274.
[14] M. Gad-el-Hak, The MEMS Handbook, CRC Press,
New York, USA (2001).
[15] O. Schmalz, M. Hess, R. Kosfeld, Structural changes
in poly(methyl methacrylate) during deep-etch X-ray
synchroton radiation litography. Part II: Radiation
effects on PMMA, Die Angewandte makromoleku-
lare Chemie 239 (1996) 79–91.
[16] W. Glashauser and G.V. Ghica, German patent,
3039110 (1982).
[17] J.S. Greeneich, Developer characteristics of poly-
(methyl electron resist methacrylate), J. Electrochem.
Soc. 122 (1975) 970–976.
[18] Z. Liu, F. Bouamrane, M. Rouilliay, R. Kupka,
A. Labeque, S. Metgert, Resist dissolution rate and
inclined-wall structures in deep x-ray lithography, J.
Micromech. Microeng. 8 (1998) 293–300.
[19] P. Meyer, A. El-Kholi, J. Mohr, C. Cremers,
F. Bouamrane, S. Metgert, Study of the development
behavior of irradiated foils and microstructure, SPIE
3874 (1999) 312–320.
[20] P. Meyer, A. El-Kholi, J. Schulz, Investigations of the
development rate of irradiated PMMA microstruc-
tures in deep X-ray lithography, Microelectronic
Engineering 63 (2002) 319–328.
[21] F.J. Pantenburg, S. Achenbach, J. Mohr, Influence of
developer temperature and resist material on the
structure quality in deep x-ray lithography, J. Vac.
Sci. Technol. 16 (1998) 3547–3551.
[22]P.Meyer,J.Schulz,L.Hahn,DoseSim:MS-
Windows Graphical User Interface for using synchro-
tron X-ray exposure and subsequent development in
the LIGA process, Review of Scientific Instruments
74 (2) (2002) 1113–1119.
[23] S. Hafizovic et al., X3D: 3D X-ray lithography and
development simulation for MEMS, Transducers’03
(2003) 1570–1573.
[24] M. Paunovic and M.Schlesinger, Fundamentals of
Electrochemical Deposition. The Electrochemical Soci-
ety Series, John Wiley and Sons 2nd edition (2006).
[25] S.K. Griffiths, J.M. Hruby, A. Ting, The influence of
feature sidewall tolerance on minimum absorber
thickness for LIGA x-ray masks, J. Micromech.
Microeng. 9 (1999) 353–361.
[26] S.K. Griffiths, Fundamental limitations of LIGA x-ray
lithography: sidewall offset, slope and minimum feature
size, J. Micromech. Microeng. 14 (2004) 999–1011.
[27] D. Chinn, P. Ostendorp, M. Haugh, R. Kershmann,
T. Kurgess, A. Claudet, T. Tucker, Three dimen-
sional imaging of LIGA-made microcomponents, J.
of Manufacturing Science and Engineering 126
(2004) 813–821.
CHAPTER 13 Deep X-Ray Lithography 219