444 Answers to Odd-Numbered Exercises
7. u(r) = 325 +10
4
(0.25 −r
2
)/4; u(0) = 950.
9. u(x) = T
0
+AL
2
(1 −e
−x/L
).
Section 0.5
1. G(x, z) =
z(a − x)/(−a), 0 < z ≤ x,
x(a −z)/(−a), x ≤ z < a.
3. G(x, z) =
cosh(γ z) sinh(γ (a −x))/(−γ cosh(γ a)), 0 < z ≤x,
cosh(γ x) sinh(γ (a −z))/(−γ cosh(γ a)), x ≤z < a.
5. G(ρ, z) =
(c −ρ)/ρ
−c/z
2
, 0 ≤z <ρ,
(c −z)/z
−c/z
2
,ρ≤z < c.
7. G(x, z) =
sinh(γ z)e
−γ x
−γ
, 0 < z ≤x,
sinh(γ x)e
−γ z
−γ
, x ≤z.
9. u(ρ) = (ρ
2
−c
2
)/6.
11. u(x) =
a
0
G(x, z)f (z)dz =
x
0
z(a − x)
−a
f (z)dz +
a
x
x(a −z)
−a
f (z)dz.
There are two cases:
(i) x ≤ a/2, so u(x) =
a
a/2
x(a −z)
−a
dz;
and
(ii) x > a/2, so u(x) =
a
x
x(a −z)
−a
dz.
Results: u(x) =
−ax/8, 0 < x < a/2,
−x(a −x )
2
/2a, a/2 < x < a.
13. (i) At the left boundary, x = l < z, so the second line of Eq. (17) holds.
The boundary condition (2) is satisfied by v because it is satisfied by u
1
.
At the right boundary, use the first line of Eq. (17).
(ii) At x =z,bothlinesofEq.(17)givethesamevalue.
(iii) v
(z +h) −v
(z −h) =
u
1
(z)u
2
(z +h) −u
1
(z −h)u
2
(z)
W(z)
.
As h approaches 0, the numerator approaches W(z).