vi Contents
CHAPTER 2 The Heat Equation 135
2.1 Derivation and Boundary Conditions 135
2.2 Steady-State Temperatures 143
2.3 Example: Fixed End Temperatures 149
2.4 Example: Insulated Bar 157
2.5 Example: Different Boundary Conditions 163
2.6 Example: Convection 170
2.7 Sturm–Liouville Problems 175
2.8 Expansion in Series of Eigenfunctions 181
2.9 Generalities on the Heat Conduction Problem 184
2.10 Semi-Infinite Rod 188
2.11 Infinite Rod 193
2.12 The Error Function 199
2.13 Comments and References 204
Chapter Review 206
Miscellaneous Exercises 206
CHAPTER 3 The Wave Equation 215
3.1 The Vibrating String 215
3.2 Solution of the Vibrating String Problem 218
3.3 d’Alembert’s Solution 227
3.4 One-Dimensional Wave Equation: Generalities 233
3.5 Estimation of Eigenvalues 236
3.6 Wave Equation in Unbounded Regions 239
3.7 Comments and References 246
Chapter Review 247
Miscellaneous Exercises 247
CHAPTER 4 The Potential Equation 255
4.1 Potential Equation 255
4.2 Potential in a Rectangle 259
4.3 Further Examples for a Rectangle 264
4.4 Potential in Unbounded Regions 270
4.5 Potential in a Disk 275
4.6 Classification and Limitations 280
4.7 Comments and References 283
Chapter Review 285
Miscellaneous Exercises 285
CHAPTER 5 Higher Dimensions and Other Coordinates 295
5.1 Two-Dimensional Wave Equation: Derivation 295
5.2 Three-Dimensional Heat Equation 298
5.3 Two-Dimensional Heat Equation: Solution 303