similar radar echoes (from TRMM) still have higher lightning frequency over land,
for reasons that are under investigation but must involve details of the microphy-
sics.
REFERENCES
Adler, R. F., G. J. Huffman, D. V. Bolvin, S. Curtis, and E. J. Nelkin (2000). Tropical rainfall
distributions deter mined using TRMM combined with other satellite and rain gauge
information, J. Appl. Meteor. 39, 2007–2023.
Barnes, G. M. (2001). Severe weather in the tropics, in Severe Convective Storms, Meteor.
Monographs, 28(50), C. Doswell (Ed.)., Am. Meteor. Soc., Boston MA.
Boccippio, D. J., S. J. Goodman, and S. Heckman (2000). Regional differences in tropical
lightning distributions, J. Appl. Meteor. 39, 2231–2248.
Chappell, C. F. (1986). Quasi-stationary convective events. Mesoscale analysis and forecasting,
P. S. Ray (Ed.), Am. Meteor. Soc. 289–310.
Godfrey, J. S., R. A. Houze, Jr., R. H. Johnson, R. Lukas, J.-L. Redelsberger, A. Sumi, and
R. Weller (1998). Coupled Ocean–Atmosphere Response Experiment: An interim report,
J. Geophys. Res. 103(C7), 14,395–14,450.
Houze, R. A., Jr. (1993). Cloud Dynamics, Academic Press, San Diego, CA.
Laing, A. G., and J. M. Fritsch (1997). The global population of mesoscale convective
complexes, Quart. J. Roy. Meteor. Soc. 123, 389–405.
Laing, A. G., and J. M. Fritsch (2000). The large-scale environments of the global populations
of mesoscale convective complexes, Mon. Wea. Rev. 128, 2756–2776.
LeMone, M. A., E. J. Zipser, and S. B. Trier (1998). The role of environmental shear and CAPE
in determining the structure and evolution of mesoscale convective systems during TOGA
COARE, J. Atmos. Sci. 55, 3493–3518.
Madden, R. A., and P. R. Julian (1972). Description of global-scale circulation cells in the
Tropics with a 40–50 day period, J. Atmos. Sci. 29, 1109–1123.
Madden, R. A., and P. R. Julian (1994). Observations of the 40–50 day tropical oscillation—A
review. Mon. Wea. Rev., 122, 814–837.
McCollum, J. R., A. Gruber, and M. B. Ba (2000). Discrepancy between gauges and satellite
estimates of rainfall in equatorial Africa, J. Appl. Meteor. 39, 666–679.
Mohr, K. I., and E. J. Zipser (1996a). Defining mesoscale convective systems by their ice
scattering signature, Bull. Am. Meteor. Soc. 77, 1179–1189.
Mohr, K. I., and E. J. Zipser (1996b). Mesoscale convective systems defined by their 85 GHz
ice scattering signature: Size and intensity comparison over tropical oceans and continents,
Mon. Wea. Rev. 124, 2417–2437.
Reed, R. J., D. C. Norquist, and E. E. Recker (1977). The Structure and Properties of African
Wave Disturbances as Observed During Phase III of GATE, Mon. Wea. Rev. 105, 317–333.
Riehl, H., and J. S. Malkus (1958). On the heat balance in the equatorial trough zone,
Geophysica 6, 503–538.
Rutledge, S. A., E. R. Williams, and T. D. Keenan (1992). The Down Under Doppler and
Electricity Experiment (DUNDEE): Overview and preliminary results, Bull. Am. Meteor.
Soc. 73, 3–16.
638
TROPICAL PRECIPITATING SYSTEMS