Electron Transfer Partners of Cytochrome P450
141
Role of NADPH:cytochrome c reductase and DT-
diaphorase in the biotransformation of mitomycin
CI.
Cancer Res. 44, 5638-5643.
56.
Walton, M.I., C.R.
Wolf,
and R Workman (1992).
The role of cytochrome P450 and cytochrome P450
reductase in the reductive bioactivation of the novel
benzotriazine di-N-oxide hypoxic cytotoxin 3-amino-
l,2,4-benzotriazine-l,4-dioxide (SR
4233,
WIN
59075) by mouse liver. Biochem. Pharmacol. 44,
251-259.
57.
Vasquez-Vivar, J., P. Martasek, N. Hogg,
B.S.
Masters, K.A. Pritchard, Jr., and
B.
Kalyanaraman (1997). Endothelial nitric oxide
synthase-dependent superoxide generation from
adriamycin. Biochemistry 36, 11293-11297.
58.
Bridges, A., L. Gruenke, Y.T. Chang, I.A. Vakser,
G. Loew, and L. Waskell (1998). Identification of
the binding site on cytochrome P450 2B4 for
cytochrome b(5) and cytochrome P450 reductase.
J. Biol Chem. li:^, 17036-17049.
59.
Wang, J. and PR. Ortiz De Montellano (2003). The
binding sites on human heme oxygenase-1 for
cytochrome P450 reductase and biliverdin reduc-
tase.
J. Biol. Chem. 6, 6.
60.
Hubbard, PA., A.L. Shen, R. Paschke, C.B. Kasper,
and
J.J.
Kim (2001). NADPH-cytochrome P450 oxi-
doreductase. Structural basis for hydride and elec-
tron transfer. J. Biol. Chem. 276, 29163-29170.
61.
Craig, D.H., S.K. Chapman, and S. Daff (2002).
Calmodulin activates electron transfer through neu-
ronal nitric-oxide synthase reductase domain by
releasing an NADPH-dependent conformational
lock. J. Biol. Chem. Ill, 33987-33994.
62.
Barsukov, I., S. Modi, L.Y. Lian, K.H. Sze, M.J.
Paine, C.R. Wolfe/ al (1997). IH, 15N and 13C
NMR resonance assignment, secondary structure
and global fold of the FMN-binding domain of
human cytochrome P450 reductase.
J.
Biomol. NMR
10,
63-75.
63.
Zhao, Q., S. Modi, G. Smith, M. Paine, PD.
McDonagh, C.R. Wolfe/ al. (1999). Crystal struc-
ture of the FMN-binding domain of human
cytochrome P450 reductase at 1.93 A resolution.
Protein Sci. 8, 298-306.
64.
Ludwig, M.L., K.A. Pattridge, A.L. Metzger, M.M.
Dixon, M. Eren, Y. Feng et al. (1997). Control of
oxidation-reduction potentials in flavodoxin from
Clostridium beijerinckii: The role of conformation
changes. Biochemistry 36, 1259-1280.
65.
Shen, A.L., T.D. Porter, T.E. Wilson, and C.B.
Kasper (1989). Structural analysis of the FMN bind-
ing domain of NADPH-cytochrome P-450 oxidore-
ductase by site-directed mutagenesis. J. Biol. Chem.
264,
7584-7589.
66.
Paine, M.J.I., S. Ayivor, A. Munro, P. Tsan,
L.Y Lian,
G.C.K.
Roberts et al. (2001). Role
of the conserved phenylalanine 181 of NADPH-
cytochrome p450 oxidoreductase in FMN binding
and catalytic activity. Biochemistry 40,13439-13447.
67.
Shen, A.L. and C.B. Kasper (2000). Differential
contributions of NADPH-cytochrome P450 oxido-
reductase FAD binding site residues to flavin bind-
ing and catalysis. J. Biol. Chem. 275, 41087^1091.
68.
Sem, D.S. and C.B. Kasper (1992). Geometric rela-
tionship between the nicotinamide and isoalloxazine
rings in NADPH-cytochrome P-450 oxidoreduc-
tase:
Implications for the classification of evolu-
tionarily and functionally related flavoproteins.
Biochemistry 31, 3391-3398.
69.
Serre, L., F.M. Vellieux, M. Medina, C. Gomez-
Moreno, J.C. Fontecilla-Camps, and M. Frey,
(1996).
X-ray structure of the ferredoxin:NADP+
reductase from the cyanobacterium Anabaena PCC
7119 at 1.8 A resolution, and crystallographic stud-
ies of NADP+ binding at 2.25 A resolution. J. Mol.
Biol. 263, 20-39.
70.
Karplus, PA., M.J. Daniels, and J.R. Herriott
(1991).
Atomic structure of ferredoxin-NADP+
reductase: Protype for a structurally novel flavoen-
zyme family. Science 251, 60-66.
71.
Gruez, A., D. Pignol, M.
Zeghouf,
1 Coves,
M. Fontecave, J.L. Ferrer et al. (2000). Four crystal
structures of the 60 kDa flavoprotein monomer of
the sulfite reductase indicate a disordered flavo-
doxin-like module. J. Mol Biol 299, 199-212.
72.
Dohr, O., M.J. Paine, T. Friedberg, G.C. Roberts,
and C.R. Wolf (2001). Engineering of a functional
human NADH-dependent cytochrome P450 system.
Proc. Natl
Acad.
ScL USA 98, 81-86.
73.
Gutierrez, A., O. Doehr, M. Paine, C.R.
Wolf,
N.S.
Scrutton, and
G.C.K.
Roberts (2000). Trp-676
facilitates nicotinamide coenzyme exchange in the
reductive half-reaction of human cytochrome P450
reductase: Properties of the soluble W676H and
W676A mutant reductases. Biochemistry 39,
15990-15999.
74.
Piubelli, L., A. Aliverti, A.K. Arakaki, N. Carrillo,
E.A. Ceccarelli, PA. Karplus et al (2000).
Competition between C-terminal tyrosine and
nicotinamide modulates pyridine nucleotide affinity
and specificity in plant ferredoxin-NADP(+)
reductase. J 5/o/. Chem. 275, 10472-10476.
75.
Deng, Z., A. Aliverti, G. Zanetti, A.K. Arakaki,
J. Ottado, E.G. Orellano et al (1999). A productive
NADP+ binding mode of ferredoxin-NADP+
reductase revealed by protein engineering and crys-
tallographic studies. Nat. Struct. Biol 6, 847-853.
76.
Sem, D.S. and C.B. Kasper (1993). Interaction
with arginine 597 of NADPH-cytochrome P-450
oxidoreductase is a primary source of the uniform
binding energy used to discriminate between NADPH
and NADH. Biochemistry 32, 11548-11558.