REFERENCES 437
Engl, H. W., Hanke, M. and Neubauer, A. (1996). Regularization of inverse
problems. Kluwer, Dordrecht.
[393]
Erdelyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. (1954). Tables
of integral transforms, Vol. I. McGraw-Hill, New York.
[124]
Gakhov, F. D. (1966). Boundary value problems. Pergamon Press, Oxford.
[211]
Garabedian, P. R. (1964). Partial differential equations. Wiley, New York.
[184, 405]
Hinch, E. J. (1991). Perturbation methods. Cambridge University Press.
[88, 318,406]
John, F. (1971). Partial differential equations. Springer-Verlag, New York.
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[68]
Jones, D. S. (1986). Acoustic and electromagnetic waves. Clarendon Press,
Oxford.
[209]
Kevorkian, J. and Cole, J. D. (1981). Perturbation methods in applied math-
ematics. Springer-Verlag, New York.
[881
Milne-Thomson, L. M. (1948). Theoretical aerodynamics. MacMillan, London.
[403]
Milne-Thomson, L. M. (1949). Theoretical hydrodynamics (2nd edn). MacMil-
lan, London.
[155,198, 402]
Moffatt, H. K. and Tsinober, A. (1990). Topological fluid mechanics. Proceed-
ings of the IUTAM Symposium. Cambridge University Press.
[417]
Ockendon, H. and Ockendon, J. R. (1995). Viscous flow. Cambridge Univer-
sity Press, New York.
[161, 409]
Ockendon, H. and Tayler, A. B. (1983). Inviscid fluid flows. Springer-Verlag,
New York. [23,53]
Oksendal, B. (1992). Stochastic differential equations (3rd edn). Springer-
Verlag, New York.
[244, 395]
Piaggio, H. T. H. (1946). An elementary treatise on differential equations and
their applications. G. Bell & Sons Ltd, London.
[360]
PGlya, G. and Szego, G. (1951). Isoperimetric inequalities in mathematical
physics. Princeton University Press. [212]
Polyanin, A. D. (2002). Handbook of linear partial differential equations for
engineers and scientists, Chapman & Hall/CRC, Boca Raton.
[174]
Protter, M. H. and Weinberger, H. F. (1967). Maximum principles in differ-
ential equations. Prentice Hall, Englewood Cliffs, NJ. [249]
Renardy, M. and Rogers, R. C. (1993). An introduction to partial differential
equations. Springer-Verlag, New York. [68]
Richards, I. and Youn, H. (1990). Theory of distributions: a non-technical
introduction. Cambridge University Press. [97]
Rubinstein, I. and Rubinstein, L. (1993). Partial differential equations in clas-
sical mathematical physics. Cambridge University Press.
[329]