Обработка материалов давлением №1 (19), 2008
124
Conclusions
The experimental investigation shown the influences of change of a drawing direction on the
decrease of drawing stresses what can cause of the increase of fatigue strength of wires drawn
according variant B6. However the changes of a structure of a surface layer and a geometrical
structure of a wire surface resulted in a decrease of the degree of orientation of cementite lamellaes
and higher flexability of a wire surface on initiation of a fatigue cracks. The increase of a gometrical
factor of surface have dominant effect and caused a decrease of the fatigue strength of wires.
A model of two-phase grain deformation for wire drawing is proposed. The conception of
simulation of the boundary conditions for the representative volume element is based on the penalty
method and uses a solution of the problem on macro-level.
The friction coefficient and deformation are influenced from the change of the cementite
lamellas orientation during the drawing.
Acknowledgments
The work was financed by The State Committee for Scientific Research (KBN) Ministry of
Education and Science of Poland, grant 3T08B04630.
REFERENCES
1. Muskalski Z. Analiza wpływu kierunku ciągnienia drutów na ich wytrzymałość zmęczeniową i trwałość
zmęczeniową lin stalowych // Politechnika Częstochowska Prace Naukowe, Seria Metalurgia. – Częstochowa, 2004. –
№ 43.
2. Z.Muskalski, A.Milenin Theoretical and experimental analysis the drawing process with change of drawing
direction, Proc. Of Conference WireExpo 2006, USA, The Wire Association International (2006) 5-10.
3. M. Zelin Microstructure evolution in pearlitic steels during wire drawing // Acta Materialia, 50 (2002)
4431-4447.
4. A.M.Elwazri, P.Wanjara, S.Yuea The effect of microstructural characteristics of pearlite on the mechanical
properties of hypereutectoid steel, Materials Science and Engineering A, 404 (2005) 91–98.
5. Q.Yu, S.K.Esche A multi-scale approach for microstructure prediction in thermo-mechanical processing of
metals, Journal of Materials Processing Technology, 169 (2005) 493–502.
6. E.Nakamachi, N.N.Tam, H.Morimoto Multi-scale finite element analyses of sheet metals by using SEM-
EBSD measured crystallographic RVE models, International Journal of Plasticity, 23 (2007) 450–489.
7. G.Johansson, M. Ekh On the modeling of evolving anisotropy and large strains in pearlitic steel European
Journal of Mechanics A/Solids, 25 (2006) 1041–1060.
8. F.Wetscher, R.Stock, R.Pippan Changes in the mechanical properties of a pearlitic steel due to large shear
deformation, Materials Science and Engineering A, 445–446 (2007) 237–243.
9. J.Toribo, E.Ovejero Microstructure evolution in a pearlitic steel subject to progressive plastic deformation,
Materials Science and Engineering A, 234–236 (1997) 579–582.
10. A.Milenin Program komputerowy Drawing2d, Hutnik – Wiadomosci Hutniche, 2, (2005) 100-104, (in
Polish).
11. A.Milenin, Z.Muskalski, S.Wiewiórowska, P.Kustra The multi-scale FEM simulation of the drawing
processes of high carbon steel // Journal of Achievements in Materials and Manufacturing Engineering, volume 23,
Issue 2, August 2007, p. 71-74, ISSN 1734-8412
12. A.Milenin, Z.Muskalski Multi-scale FEM simulation of the drawing process, Computer Methods in
Materials Science, Vol. 7, 1 (2007) 156-161.
Миленин А. (Milenin A.) – д-р техн. наук, проф. КГМА;
Мускальский З. (Muskalski Z.) – д-р техн. наук, проф. ЧПУ;
Виевировская С. (Wiewiórowska S.) – канд. техн. наук, ЧПУ.
КГМА – Краковская горно-металлургическая академия, г. Краков, Польша;
ЧПУ – Ченстоховский политехнический университет, г. Ченстохов, Польша.
milenin@ agh.edu.pl