636 Part D Automation Design: Theory and Methods for Integration
36.23 J. Pettersson, U. Persson, T. Lindberg, L. Ledung,
X. Zhang: Online pulp mill production optimiza-
tion, Proc. 16th IFAC World Congr. (Prague 2005),
on CD ROM
36.24 H. Tamura: Decentralised optimization for distrib-
uted-lag models of discrete systems, Automatica
11, 593–602 (1975)
36.25 A. Aybar, A. Iftar, H. Apaydin-
¨
Ozkan: Centralized
and decentralized supervisory controller design to
enforce boundedness, liveness, and reversibility in
Petri nets, Int. J. Control 78, 537–553 (2005)
36.26 L. Bakule: Stabilization of uncertain switched sym-
metric composite systems, Nonlinear Anal.: Hybrid
Syst. 1, 188–197 (2007)
36.27 F. Borrelli, T. Keviczky, G.J. Balas, G. Stew-
ard, K. Fregene, D. Godbole: Hybrid Decentralized
Control of Large Scale Systems, Hybrid Systems:
Computation and Control (Springer, Heidelberg
2005) pp. 168–183
36.28 G. Inalham, J. How: Decentralized inventory con-
trol for large-scale supply chains, Proc. Am. Control
Conf. (Minneapolis 2006) pp. 568–575
36.29 P. Krishnamurthy, F. Khorrami, D. Schoenwald:
Computationally tractable inventory control for
large-scale reverse supply chains, Proc. Am. Con-
trol Conf. (Minneapolis 2006) pp. 550–555
36.30 C. Langbort, V. Gupta, R.M. Murray: Distributed
control over falling channels. In: Networked Em-
bedded Sensing and Control, ed. by P. Antsaklis,
P. Tabuada (Springer, Berlin 2006) pp. 325–342
36.31 D.D.
ˇ
Siljak, A.I. Ze
ˇ
cevi
´
c: Control of large-scale sys-
tems: beyond decentralized feedback, Annu. Rev.
Control 29, 169–179 (2005)
36.32 D.D.
ˇ
Siljak: Dynamic Graphs. Plenary paper. The
International Conference on Hybrid Systems and
Applications (University of Louisiana, Lafayette
2006)
36.33 A. Arisha, P. Young: Intelligent simulation-based
lot scheduling of photolithography toolsets in
a wafer fabrication facility, Proc. 2004 Winter
Simul. Conf. (Washington 2004) pp. 1935–1942
36.34 C.S. Chong, A.I. Sivakumar, R. Gay: Simulation
based scheduling using a two-pass approach,
Proc. 2003 Winter Simul. Conf. (New Orleans 2003)
pp. 1433–1439
36.35 A.K. Gupta, A.I. Sivakumar, S. Sarawgi: Shopfloor
scheduling with simulation based proactive deci-
sion support, Proc. Winter Simul. Conf. (San Diego
2002) pp. 1897–1902
36.36 S. Julia, R. Valette: Real-time scheduling of batch
systems, Simul. Pract. Theory 8, 307–319 (2000)
36.37 S. Lee, S. Ramakrishnan, R.A. Wysk: A federation
object coordinator for simulation based control
and analysis, Proc. Winter Simul. Conf. (San Diego
2002) pp. 1986–1994
36.38 K. Leiviskä, P. Uronen, H. Komokallio, H. Auras-
maa: Heuristic algorithm for production control of
an integrated pulp and paper mill, Large Scale Syst.
3, 13–25 (1982)
36.39 K. Leiviskä: Benefits of intelligent produc-
tion scheduling methods in pulp mills, Proc.
CESA’96 IMACS Multiconf. Comput. Eng. Syst. Appl.
Symp. Control Optim. Supervis., Vol. 2 (Lille 1996)
pp. 1246–1251
36.40 Q.L. Liu, W. Wang, H.R. Zhan, D.G. Wang, R.G. Liu:
Optimal scheduling method for a bell-type batch
annealing shop and its application, Control Eng.
Pract. 13, 1315–1325 (2005)
36.41 S. Ramakrishnan, S. Lee, R.A. Wysk: Implementa-
tion of a simulation-based control architecture for
supply chain interactions, Proc. Winter Simul. Conf.
(San Diego 2002) pp. 1667–1674
36.42 S. Ramakrishnan, M. Thakur: An SDS modeling ap-
proach for simulation-based control, Proc. Winter
Simul. Conf. (Orlando 2005) pp. 1473–1482
36.43 G.D. Taylor Jr: A flexible simulation framework for
evaluating multilevel, heuristic-based production
control strategies, Proc. Winter Simul. Conf. (New
Orleans 1990) pp. 567–569
36.44 A. Ichtev, J. Hellendoom, R. Babuska, S. Mollov:
Fault-tolerant model-based predictive control us-
ing multiple Takagi–Sugeno fuzzy models, Proc.
IEEE Int. Conf. Fuzzy Syst. FUZZ-IEEE’02, Vol. 1 (Ho-
nolulu 2002) pp. 346–351
36.45 K. Leiviskä: Applications of intelligent systems in
electronics manufacturing, Proc. 2nd Conf. Manag.
Control Prod. Logist. MCPL’2000 (Grenoble 2000), on
CD-ROM
36.46 K. Leiviskä, L. Yliniemi: Design of adaptive fuzzy
controllers. In: Do Smart Adaptive Systems Ex-
ist?, ed. by B. Gabrys, K. Leiviskä, J. Strackeljan
(Springer, Berlin 2005) pp. 251–266
36.47 B. Azhar, A.B. Khairuddin, S.S. Ahmed, M.W. Mustafa,
A. Zin, H. Ahmad: A novel method for ATC compu-
tations in a large-scale power system, IEEE Trans.
Power Syst. 19(2), 1150–1158 (2004)
36.48 M.A. Hussain: Review of the applications of neural
networks in chemical process control-simulation
and online implementation, Artif. Intell. Eng. 13,
55–68 (1999)
36.49 W. Liu, J. Sarangapani, G.K. Venayagamoorthy,
D.C. Wunsch, D.A. Cartes: Neural network based
decentralized excitation control of large scale
power systems, Proc. Int. Jt. Conf. Neural Netw.
(Vancouver 2006)
36.50 M. Dehghani, A. Afshar, S.K. Nikravesh: Decen-
tralized stochastic control of power systems using
genetic algorithms for interaction estimation, Proc.
16th IFAC World Congr. (Prague 2005), on CD ROM
36.51 E.E. El Mdbouly, A.A. Ibrahim, G.Z. El-Far, M. El
Nassef: Multilevel optimization control for large-
scale systems using genetic algorithms, Proc. 2004
Int. Conf. Electr., Electron. Comput. Eng. ICEEC ’04
(Cairo 2004) pp. 193–197
Part D 36