502 Part C Automation Design: Theory, Elements, and Methods
29.15 N. Srinivas, K. Deb: Multiobjective function
optimization using nondominated sorting ge-
netic algorithms, Evolut. Comput. 3, 221–248
(1995)
29.16 H. Ishibuchi, T. Murata: A multiobjective genetic
local search algorithm and its application to flow-
shop scheduling, IEEE Trans. Syst. Man Cybern.
28(3), 392–403 (1998)
29.17 E. Zitzler, L. Thiele: Multiobjective evolutionary
algorithms: a comparative case study and the
strength Pareto approach, IEEE Trans. Evolut. Com-
put. 3(4), 257–271 (1999)
29.18 E. Zitzler, L. Thiele: SPEA2: Improving the Strength
Pareto Evolutionary Algorithm, Technical Report
103, (Computer Engineering and Communication
Networks Lab, Zurich 2001)
29.19 D. Tate, A. Smith: Unequal-area facility layout by
genetic search, IIE Trans. 27, 465–472 (1995)
29.20 J. Cohoon, S. Hegde, N. Martin: Distributed genetic
algorithms for the floor-plan design problem, IEEE
Trans. Comput.-Aided Des. 10, 483–491 (1991)
29.21 K. Tam: Genetic algorithms, function optimization,
facility layout design, Eur. J. Oper. Res. 63, 322–346
(1992)
29.22 A. Kusiak, S. Heragu: The facility layout problem,
Eur. J. Oper. Res. 29, 229–251 (1987)
29.23 M. Pinedo: Scheduling Theory, Algorithms and Sys-
tems (Prentice-Hall, Upper Saddle River 2002)
29.24 I. Kacem, S. Hammadi, P. Borne: Approach
by localization and multiobjective evolutionary
optimization for flexible job-shop scheduling
problems, IEEE Trans. Syst. Man Cybern. Part C 32(1),
408–419 (2002)
29.25 H. Zhang, M. Gen: Multistage-based genetic algo-
rithm for flexible job-shop scheduling problem, J.
Complex. Int. 11, 223–232 (2005)
29.26 K.W. Kim, Y.S. Yun, J.M. Yoon, M. Gen, G. Yamazaki:
Hybrid genetic algorithm with adaptive abilities for
resource-constrained multiple project scheduling,
Comput. Ind. 56(2), 143–160 (2005)
29.27 D. Turbide: Advanced planning and scheduling
(APS) systems, Midrange ERP Mag. (1998)
29.28 C. Moon, J.S. Kim, M. Gen: Advanced planning
and scheduling based on precedence and resource
constraints for e-Plant chains, Int. J. Prod. Res.
42(15), 2941–2955 (2004)
29.29 C. Moon, Y. Seo: Evolutionary algorithm for
advanced process planning and scheduling in
a multi-plant, Comput. Ind. Eng. 48(2), 311–325
(2005)
29.30 Y. Tsujimura, M. Gen, E. Kubota: Solving fuzzy
assembly-line balancing problem with genetic
algorithms, Comput. Ind. Eng. 29(1/4), 543–547
(1995)
29.31 M. Gen, Y. Tsujimura, Y. Li: Fuzzy assembly line
balancing using genetic algorithms, Comput. Ind.
Eng. 31
(3/4), 631–634 (1996)
29.32 J. Rubinovitz, G. Levitin: Genetic algorithm for line
balancing, Int. J. Prod. Econ. 41, 343–354 (1995)
29.33 J. Gao, G. Chen, L. Sun, M. Gen, An efficient ap-
proach for type II robotic assembly line balancing
problems, Comput. Ind. Eng., in press (2007)
29.34 L. Qiu, W. Hsu, S. Huang, H. Wang: Scheduling and
routing algorithms for AGVs: a survey, Int. J. Prod.
Res. 40(3), 745–760 (2002)
29.35 I.F.A. Vis: Survey of research in the design and con-
trol of automated guided vehicle systems, Eur. J.
Oper. Res. 170(3), 677–709 (2006)
29.36 T. Le-Anh, D. Koster: A review of design and control
of automated guided vehicle systems, Eur. J. Oper.
Res. 171(1), 1–23 (2006)
29.37 J.K. Lin: Study on guide path design and path plan-
ning in automated guided vehicle system. Ph.D.
Thesis (Waseda University, Japan 2004)
29.38 L. Lin, S.W. Shinn, M. Gen, H. Hwang: Network
model and effective evolutionary approach for AGV
dispatching in manufacturing system, J. Intell.
Manuf. 17(4), 465–477 (2006)
29.39 Y.K. Lau, Y. Zhao: Integrated scheduling of
handling equipment at automated container ter-
minals, Ann. Operat. Res. 159(1), 373–394 (2008)
29.40 A. Imai, H.C. Chen, E. Nishimura, S. Papadimitriou:
The simultaneous berth and quay crane allocation
problem, Transp. Res. Part E: Logist. Transp. Rev.
44(5), 900–920 (2008)
29.41 P. Preston, E. Kozan: An approach to determine
storage locations of containers at seaport termi-
nals, Comput. Oper. Res. 28(10), 983–995 (2001)
29.42 J.B. Yang: GA-based discrete dynamic program-
ming approach for scheduling in FMS environment,
IEEE Trans. Syst. Man Cybern. B 31(5), 824–835 (2001)
29.43 K. Kim, G. Yamazaki, L. Lin, M. Gen: Network-based
hybrid genetic algorithm to the scheduling in FMS
environments,J.Artif.LifeRobot.8(1), 67–76 (2004)
29.44 S.H. Kim, H. Hwang: An adaptive dispatching al-
gorithm for automated guided vehicles based on
an evolutionary process, Int. J. Prod. Econ. 60/61,
465–472 (1999)
29.45 A. Scholl, N. Boysen, M. Fliedner, R. Klein: Home-
page for assembly line optimization research,
http://www.assembly-line-balancing.de/
29.46 A. Scholl: Data of Assembly Line Balancing
Problems. Schriften zur Quantitativen Betriebs-
wirtschaftslehre 16/93, (TH Darmstadt, Darmstadt
1993)
29.47 G. Levitin, J. Rubinovitz, B. Shnits: A genetic algo-
rithm for robotic assembly balancing, Eur. J. Oper.
Res. 168, 811–825 (2006 )
Part C 29