726 Answers and H ints to Selected Exercises
16. u (x, t)=
∞
n=1
2l
2
n
3
π
3
[1 − (−1)
n
] e
−(nπ /l)
2
t
cos
nπx
l
.
18. v (x, t)=Ct
1 −
x
l
−
Cl
2
6k
"
x
l
3
− 3
x
l
2
+2
x
l
#
+
2Cl
2
π
3
k
∞
k=1
e
−n
2
π
2
kt/l
2
n
3
sin
nπx
l
.
21. u (x, t)=v (x, t)+w (x), where
v (x, t)=e
−kt
sin x +
∞
n=1
a
n
e
−n
2
kt
sin (nx), and
a
n
=
−n
(n
2
+a
2
)
[(−1) e
−n−ax
− 1] +
2A
a
2
kπ
1
n
{(−1)
n
− 1}
!
+
(−1)
n
n
[e
−aπ
− 1]
w (x)=
A
a
2
k
1 − e
−ax
+
x
π
(e
−aπ
− 1)
!
.
36. Hint: Suppose R is the rectangle 0 ≤ x ≤ a,0≤ y ≤ b and ∂R is
its boundary positively oriented. Suppose that u
1
and u
2
are solutions
of the problem, and put v =(u
1
− u
2
). Then v satisfies the Laplace
equation with v =(x, 0) = 0 = v (x, b), v
x
(0,y)=0=v
x
(a, y).
8.14 Exercises
1. (a) λ
n
= n
2
, φ
n
(x)=sinnx for n =1, 2, 3,...
(b) λ
n
= ((2n − 1) /2)
2
, φ
n
(x) = sin ((2n − 1) /2) πx for n =1, 2, 3,...
(c) λ
n
= n
2
, φ
n
(x)=cosnx for n =1, 2, 3,....
2. (a) λ
n
=0,n
2
π
2
, φ
n
(x)=1,sinnπx,cosnπx for n =1, 2, 3,...
(b) λ
n
=0,n
2
, φ
n
(x)=1,sinnx,cosnx for n =1, 2, 3,...
(c) λ
n
=0,4n
2
, φ
n
(x)=1,sin2nx, cos 2nx for n =1, 2, 3,....
3. (a) λ
n
= −
3/4+n
2
π
2
, φ
n
(x)=e
−x/2
sin nπx, n =1, 2, 3,....
4. (a) λ
n
=1+n
2
π
2
, φ
n
(x)=(1/x)sin(nπ ln x), n =1, 2, 3,....
(b) λ
n
=
1
4
+(nπ/ ln 3)
2
, φ
n
(x)=
"
1/ (x +2)
1
2
#
sin [(nπ/ ln 3) ln (x + 2)],
n =1, 2, 3,....