Answers and Hints to Selected Exercises
1.6 Exercises
1. (a) Linear, nonhomogeneous, second-order; (b) qu asi-linear, first-order;
(c) nonlinear, first-order; (d) linear, homogeneous, fourth-order; (e) lin-
ear, nonhomogeneous, second-order; (f) quasi-linear, third -order; (g)
nonlinear, second-order; and (h) nonlinear, homogeneous.
5. u (x, y)=f (x)cosy + g (x)siny.
6. u (x, y)=f (x) e
−y
+ g (y).
7. u (x, y)=f (x + y)+g (3x + y).
8. u (x, y)=f (y + x)+g (y − x).
11. u
x
= v
y
⇒ u
xx
= v
xy
, v
x
= −u
y
⇒ v
yx
= −u
yy
.
Thus, u
xx
+ u
yy
= 0. Similarly, v
xx
+ v
yy
=0.
12. Since u (x, y) is a homogeneous function of degree n, u = x
n
f
y
x
.
u
x
= nx
n−1
f
y
x
− x
n−2
yf
′
y
x
,andu
y
= x
n−1
f
′
y
x
.
Thus, xu
x
+ yu
y
= nx
n
f
y
x
= nu.
23. u
x
= −
1
b
exp
−
x
b
f (ax − by)
+exp
−
x
b
d
d(ax−by )
f (ax − by) ·
d(ax−by )
dx
= −
1
b
exp
−
x
b
f + a exp
−
x
b
f
′
(ax − by)
u
y
=(−b)exp
−
x
b
f
′
(ax − by) . Thus, bu
x
+ au
y
+ u =0.