6.9 Fourier Series on an Arbitrary Interval 197
On changing t into x, we find the expansion for f (x)in[a, b]
f (x)=
a
0
2
+
∞
k=1
a
k
cos
kπ (2x − b − a)
(b − a)
+ b
k
sin
kπ (2x − b − a)
(b − a)
,(6.9.3)
where
a
k
=
2
b − a
b
a
f (x)cos
kx (2x − b − a)
(b − a)
dx, k =0, 1, 2,..., (6.9.4)
b
k
=
2
b − a
b
a
f (x)sin
kx (2x − b − a)
(b − a)
dx, k =1, 2, 3,.... (6.9.5)
It is sometimes convenient to take the interval in which the function f is
defined as [−l, l]. It follows at once from the r esult just obtained that by
letting a = −l and b = l, the Fourier expansion for f in [−l, l ] takes the
form
f (x)=
a
0
2
+
∞
k=1
a
k
cos
kπx
l
+ b
k
sin
kπx
l
, (6.9.6)
where
a
k
=
1
l
l
−l
f (x)cos
kπx
l
dx, k =0, 1, 2,..., (6.9.7)
b
k
=
1
l
l
−l
f (x)sin
kπx
l
dx, k =1, 2, 3,.... (6.9.8)
If f is an even function of period 2l , then, from equation (6.9.6), we can
readily determine the Fourier cosine expansion in the form
f (x)=
a
0
2
+
∞
k=1
a
k
cos
kπx
l
, (6.9.9)
where
a
k
=
2
l
l
0
f (x)cos
kπx
l
dx, k =0, 1, 2,.... (6.9.10)
If f is an odd function of period 2l, then, from equation (6.9.6), the Fourier
sine expansion for f is
f (x)=
∞
k=1
b
k
sin
kπx
l
, (6.9.11)
where