6.14 Exercises 223
(d)
∞
k=1
sin(2k+1)x
(2k+1)
3
=
π
2
x−πx
2
8
0 <x<2π,
(e)
4
π
∞
k=1
sin(2k−1)x
(2k−1)
=
⎧
⎨
⎩
−1
1
−π<x<0
0 <x<π.
10. Determine the double Fourier series of the following functions:
(a) f (x, y)=1 0<x<π 0 <y<π,
(b) f (x, y)=xy
2
0 <x<π 0 <y<π,
(c) f (x, y)=x
2
y
2
0 <x<π 0 <y<π,
(d) f (x, y)=x
2
+ y −π<x<π −π<y<π,
(e) f (x, y)=x sin y −π<x<π −π<y<π,
(f) f (x, y)=e
x+y
−π<x<π −π<y<π,
(g) f (x, y)=xy 0 <x<10<y<2,
(h) f (x, y)=1 0<x<a 0 <y<b,
(i) f (x, y)=x cos y −1 <x<1 −2 <y<2,
(j) f (x, y)=xy
2
−π<x<π −π<y<π,
(k) f (x, y)=x
2
y
2
−π<x<π −π<y<π.
11. Deduce the general double Fourier series expansion f ormula for the func-
tion f (x, y) in the rectangle −a<x<a, −b<y<b.
12. Prove the Weierstrass Approximation Theorem:Iff is a continuous
function on the interval −π ≤ x ≤ π and if f (−π)=f (π), then, for
any ε>0, there exists a trigonometric polynomial
T (x)=
a
0
2
+
n
k=1
(a
k
cos kx + b
k
sin kx)
such that
|f (x) − T (x)| <ε
for all x in [−π, π].