464 References
247. M. Nakamura and M. Iri: A structural theory for submodular functions, poly-
matroids and polymatroid intersections, Research Memorandum, RMI 81-06
(1981), Dept. Math. Eng. Instr. Phys., University of Tokyo.
248. H. Narayanan: Submodular Functions and Electrical Networks, Elsevier, Am-
sterdam, 1997.
249. H. Narayanan and M. N. Vartak: An elementary approach to the principal
partition of a matroid, Trans. Inst. Electr. Comm. Engin. Japan, E64 (1981),
227–234.
250. G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, eds.: Optimization,
Handbooks in Operations Research and Management Science, Vol. 1, Elsevier,
Amsterdam, 1989.
251. G. L. Nemhauser and L. A. Wolsey: Integer and Combinatorial Optimization,
John Wiley, New York, 1988.
252. M. Newman: Integral Matrices, Academic Press, London, 1972.
253. Y. Ohta: Bilinear Theory of Soliton, Doctor’s dissertation, University of
Tokyo, 1992.
254. T. Ohtsuki, Y. Ishizaki, and H. Watanabe: Network analysis and topological
degrees of freedom (in Japanese), Trans. Inst. Electr. Comm. Engin. Japan,
51A (1968), 238–245.
255. J. O’Neil and D. B. Szyld: A block ordering method for sparse matrices,
SIAM J. Sci. Stat. Comput., 11 (1990), 811–823.
256. O. Ore: Graphs and matching theorems, Duke Math. J., 22 (1955), 625–639.
257. O. Ore: Studies on directed graphs, I, Annals of Math., 63 (1956), 383–406.
258. J. B. Orlin and J. H. Vande Vate: Solving the linear matroid parity problem as
a sequence of matroid intersection problems, Math. Programming, 47 (1990),
81–106.
259. J. G. Oxley: Matroid Theory, Oxford University Press, Oxford, 1992.
260. T. Ozawa: Common trees and partition of two-graphs (in Japanese), Trans.
Inst. Electr. Comm. Engin. Japan, 57A (1974), 383–390.
261. T. Ozawa: Topological conditions for the solvability of linear active networks,
Int. J. Circuit Theory and Appl., 4 (1976), 125–136.
262. T. Ozawa: Structure of 2-graphs (in Japanese), Trans. Inst. Electr.
Comm. Engin. Japan, J59A (1976), 262–263.
263. L. Pandolfi: Controllability and stabilization for linear systems of algebraic
and differential equations, J. Opt. Theory Appl., 30 (1980), 601–620.
264. C. C. Pantelides: The consistent initialization of differential-algebraic sys-
tems, SIAM J. Sci. Stat. Comput., 9 (1988), 213–231.
265. C. H. Papadimitriou and K. Steiglitz: Combinatorial Optimization: Algo-
rithms and Complexity, Prentice-Hall, Englewood Cliffs, 1982.
266. H. Perfect: A generalization of Rado’s theorem on independent transversals,
Proc. Cambridge Philos. Soc., 66 (1969), 513–515.
267. B. Petersen: Investigating solvability and complexity of linear active networks
by means of matroids, IEEE Trans. Circuits Syst., CAS-26 (1979), 330–342.
268. J. C. Picard and M. Queyranne: On the structure of all minimum cuts in a
network and applications, Math. Programming Study, 13 (1980), 8–16.
269. V. Pichai, M. E. Sezer, and D. D.
ˇ
Siljak: A graph-theoretic characterization
of structurally fixed modes, Automatica, 20 (1984), 247–250.
270. S. Poljak: Maximum rank of powers of a matrix of a given pattern,
Proc.Amer.Math.Soc., 106 (1989), 1137–1144.
271. S. Poljak: On the generic dimension of controllable subspaces, IEEE Trans.
Automat. Control, AC-35 (1990), 367–369.
272. J. W. Ponton and P. J. Gawthrop: Systematic construction of dynamic models
for phase equilibrium processes, Comput. Chem. Engin., 15 (1991), 803–808.