456 References
70. J. Edmonds: Matroid intersection, in: Discrete Optimization (P.L.Hammer,
E. L. Johnson, and B. H. Korte, eds.), Ann. Disc. Math., 4 , North-Holland,
Amsterdam, 1979, 39–49.
71. J. Edmonds and R. M. Karp: Theoretical improvements in algorithmic effi-
ciency for network flow problems, J. ACM, 19 (1972), 248–264.
72. H. Elmqvist, M. Otter, and F. Cellier: Inline integration: A new mixed sym-
bolic/numeric approach for solving differential-algebraic equation systems,
Proc. European Simulation Multiconference, Prague, June 1995.
73. A. M. Erisman, R. G. Grimes, J. G. Lewis, W. G. Poole Jr., and H. D.
Simon: Evaluation of orderings for unsymmetric sparse matrices, SIAM J.
Sci. Stat. Comput., 8 (1987), 600–624.
74. U. Faigle: Matroids in combinatorial optimization, in: Combinatorial Geome-
tries (N. White, ed.), Cambridge University Press, London, 1987, 161–210.
75. L. R. Ford Jr. and D. R. Fulkerson: Flows in Networks, Princeton University
Press, Princeton, 1962.
76. A. Frank: A weighted matroid intersection algorithm, J. Algorithms, 2 (1981),
328–336.
77. A. Frank: An algorithm for submodular functions on graphs, in: Bonn Work-
shop on Combinatorial Optimization (A. Bachem, M. Gr¨otschel, and B. Korte,
eds.), Ann. Disc. Math., 16, North-Holland, Amsterdam, 1982, 97–120.
78. G. Frobenius:
¨
Uber zerlegbare Determinanten, Sitzungsber. Preuss. Akad.
Wiss. Berlin, 1917, 274–277. (Gesammelte Abhandlungen, 3 (1968), Springer-
Verlag, New York, 701–704.)
79. S. Fujishige: A primal approach to the independent assignment problem, J.
Oper. Res. Soc. Japan, 20 (1977), 1–15.
80. S. Fujishige: Algorithms for solving the independent-flow problems, J.
Oper. Res. Soc. Japan, 21 (1978), 189–204.
81. S. Fujishige: Principal structure of submodular systems, Disc. Appl. Math.,
2 (1980), 77–79.
82. S. Fujishige: Submodular Functions and Optimization, North-Holland, Ams-
terdam, 1991, 2nd ed., Elsevier, Amsterdam, 2005.
83. H. N. Gabow and M. Stallmann: An augmenting path algorithm for linear
matroid parity, Combinatorica, 6 (1986), 123–150.
84. H. N. Gabow and Y. Xu: Efficient theoretic and practical algorithms for linear
matroid intersection problems, J. Comput. Syst. Sci., 53 (1996), 129–147.
85. P. Gabriel and A. V. Roiter: Algebra VIII, Representations of Finite-
Dimensional Algebras, Springer-Verlag, Berlin, 1992.
86. R. Gani and I. T. Cameron: Modelling for dynamic simulation of chemical
processes — The index problem, Chem. Engin. Sci., 47 (1992), 1311–1315.
87. F. R. Gantmacher:
The Theory of Matrices, Chelsea, New York, 1959.
88. C. W. Gear: Differential-algebraic equation index transformations, SIAM J.
Sci. Stat. Comput., 9 (1988), 39–47.
89. C. W. Gear: Differential algebraic equations, indices, and integral algebraic
equations, SIAM J. Numer. Anal., 27 (1990), 1527–1534.
90. J. F. Geelen: Matroids, Matchings, and Unimodular Matrices,Ph.D.Thesis,
University of Waterloo, 1995.
91. J. F. Geelen: An algebraic matching algorithm, Combinatorica, 20 (2000),
61–70.
92. J. F. Geelen: Maximum rank matrix completion, Linear Algebra Appl., 288
(1999), 211–217.
93. J. F. Geelen, S. Iwata, and K. Murota: The linear delta-matroid parity prob-
lem, J. Combin. Theory, B88 (2003), 377–398.