First-Order Approximation
139
It may be seen that the extensional displacements {u\°\uf\u^) are
coupled with the flexural displacements (u™,u?,u? ) in (5.061)
through the constants cu, c
2
4, c
34
, c
54
, c
i6
, c
lb
, c
36
and c
56
. The first, third
and fifth of (5.061) are essentially extensional equations of motion, but
involve some flexure. The second, fourth and sixth of (5.061) are
essentially flexural equations of motion, but involve some extension.
For the monoclinic case, we have
dx,
du
dx-,
dx
'55
(0)
' +C,
2
«2
1)+C
13
du™
du™ du.
3x
3
(0)\
f
+
c
14
dx-,
+
14
0)
dx
l
d
dx
x
-65
(du™ du,
—— + —-
dx
(0)\
+ c
56
du
V
dx
(0)
2
+u®
r(0)
26
:
PU\
(0)
dx, dx-,
(du™
+
c,
66
dx
*-
+
««
dx?
du
(0)
'41 '
3x,
+ C
d
,MT +C
-42"2
43"
du™
dx-,
+ c,
_d_
dx,
'55
dx-,
du
(o) ^
V
&, u*
3 j
dx-,
+
c
56
*^
+
.»
dx
'31
+ C
3
2«2
)+C
33'
du™
dx-,
+ c
du
(0)
dx-,
•
+ u
0)
2b
-puT
'*2U.!>'
V
ck,
26
:
P«3
(0)
d
dx,
du
(i)
5«
(i)
dx,
• + c
13
dx-,
• +
c
14
fix,
ck?
'55
'65
'du? du^
+
dx
]
'du™
V
dx-,
+
c
du?
56
/
^_
+
dul
dx
x
dx
3
+ c, 66
dx,
du™
dXy
+ u
(1)
3F
(1)
Dr
\ --(ft
-53--*".°