
MATHEMATICAL EQUATIONS
47-21
Hyperboloid of Revolution
Revolving an x-hyperbola about the x-axis results in
the hyperboloid of two sheets
a2(y2
+
z2)
-
b2x2
=
-a2b2
Revolving an x-hyperbola about the y-axis results in the
hyperboloid of one sheet
b2(x2
+
2')
-
a2y2
=
a2b2
DIFFERENTIAL CALCULUS
List of Derivatives
In
the following,
u,
v,
w
are differentiable functions
of
x,
and c is
a
constant.
General Equations:
dcldx
=
0
dx/dx
=
1
(d/dx)(u
+
v
-
w)
=
(du/dx)
+
(dv/dx)
-
(dw/dx)
(d/dx)(cv)
=
c(dv/dx)
(d/dx)(uv)
=
u(dv/dx)
+
v(du/dx)
(d/dx)(VC)
=
cvc-
'
(dvldx)
dxv
V2
d
(!)
-
-
v(du/dx)
-
u(dv/dx)
dyldx
=
(dy/dv)(dv/dx),
dyldx
=
(dn/dy)-'
,
if y
=
y(v)
if dxldy
#
0
Transcendental Functions:
(~/G!x)
Inv
=
v-l
(dv/dx)
(d/dx)
(c")
=
c'lnc(dv/dr)
(d/dn)
(e")
=
e"(&/&)
(d/dx)
(u")
=
vuy-'(du/dx)
+
(Inu)u'(dv/dx)
(dldx)
(sinv)
=
cosv(dv/dx)
(dldx)
(cosv)
=
-sinv(dv/dx)
(~x)
(tanv)
=
sec2v(dv/dx)
(dldr)
(cotv)
=
-csc2v(dv/dx)
(d/dx)
(secv)
=
secv tanv(dv/dn)
(d/dn)
(cscv)
=
cscv cotv(dv/dx)
(d/dx)
(arc sinv)
=
(1
-
v2)-li2(dv/dx)
(dldx)
(arc cosv)
=
-(1
-
v2)-1/2(dv/dx)
(dldx)
(arc tanv)
=
(1
+
v2)-'(dv/dx)
(d/dx)
(arc cotv)
=
-(1
+
vZ)-'(dv/dx)
(d/dx)
(arc secv)
=
[v(v2
-
1)1'2]-t(dv/~)
(d/dx)
(arc cscv)
=
-[v(v2
-
1)'/2]-l(dv/dx)
(d/d-x)
(sinhv)
=
coshv(dv/dx)
(dldx)
(coshv)
=
sinhv(dv/dx)
(d/dx)
(tanhv)
=
sech2v(dv/dx)
TABLE OF INTEGRALS
lndef inite Integrals
Jaf(x)dx
=
a/h&
General Equations:
IMX)
+
g(n)ldx
=
IJ
f(x)dx
+
gwx
Elementary
Forms: