µ
µ(t, α)|
α∈∂A
= 0,
x ∈ H
2
(T ×
A; R
n
) u ∈ U ⊂ L
2
(T × A; R
m
) U
u t, α, x ϕ
u F u
λ(t, α)
λ(t, α) = (λ
j
(t, α))
n
j=1
, λ(t, α) = 0, λ(t, α)|
α∈∂A
= 0.
L(t, α, x, u, λ) = ϕ(t, α, x, u) + λ(t, α)F (t, α, x, u).
∂x
∂t
+ div
α
(µ ◦ x) = D(x) + F (t, α, x, bu),
∂λ
∂t
+ (µ ∗
∂λ
∂α
)
∗
+
¯
D(λ) = −
∂L(t,α,x,bu,λ)
∂x
,
x(0, α) = x
0
(α), x(t, α)|
α∈∂A
= ¯x(t, α),
λ(t, α) = 0, λ(t, α)|
α∈∂A
= 0,
bu(t, α) = arg max
u∈U
L(t, α, bx, u, λ)
α, u
D
∂x
∂t
+
∂(µx)
∂α
= D
∂
2
x
∂α
2
+ F (t, α, x, u),
x(0, α) = x
0
(α),
x(t, α) = x(t), x(t, α) = x(t),
R
T ×A
ϕ(t, α, x, u)dαdt → sup
u∈U
.
(2)
A = [α; α], µ(t, α) = µ(t, α) = 0.