∂C
∂t
= K
i
∂
2
C
∂x
2
i
− v
i
∂C
∂x
i
,
K
i
v
i
C(x
1
, x
2
, x
3
, t) = Q · G(x
1
, x
2
, x
3
, t),
Q
G(x
1
, t) =
exp(−(x
1
− x
0
1
) − v
1
t)
2
4K
1
t
/(2
p
πK
1
t).
t
.
X
i,j
F
F
0
E
X
i,j
(t) → X
i,j
(t+1)
M
i,j
=
i−1,j+1 i−1,j i−1,j−1 i,j+1 i,j−1
i+1,j+1 i+1,j i+1,j−1
X
i,j
(t) ∈ → |X
i,j
(t + 1) ∈
st st i,j i,j
R (i, j)
V m