p (t) = (p
1
(t) , ..., p
n
(t)) ∈ σ
σ =
©
p ∈ R
n
: p
i
≥ 0, i = 1, ..., n, e
T
p = 1
ª
n
R
n
, e
˙p = h (p) D (f)
¡
Wf − eθ
−1
(p) hf, Wfi
¢
f (p) = (f
1
(p
1
) , ..., f
n
(p
n
)) f
i
f
i
(0) = 0 , ∂f
i
/∂p
i
> 0 p
i
> 0
∂f
i
/∂p
i
≥ 0 p
i
= 0 D (f ) = diag (f
1
, ..., f
n
) ; W = (w
ij
)
h : σ → (0, ∞]
θ (p) = he, f (p)i , h·, ·i
h ˙p (t) , ei ≡ 0 f
i
(0) = 0 σ
W
W
Intσ
ˆp ∈ Intσ
¡
W
T
+ W
¢
(n − 1)