Characterization of Thin Films and Coatings 863
[128] M. Kudo, in: D. Briggs, J.T. Grant (Eds.), Surface Analysis by Auger and X-ray Photoelectron
Spectroscopy, IM, Chichester (2003).
[129] M.P. Seah, I.S. Gilmore, Quantitative AES. VIII: Analysis of Auger electron intensities from elemental data
in a digital Auger database, Surf. Interface Anal. 26 (1998) 908–929.
[130] K.D. Childs, C.L. Hedberg, Handbook of Auger Electron Spectroscopy: A Book of Reference Data for
Identification and Interpretation in Auger Electron Spectroscopy, Physical Electronics, Eden Prairie, MN
(1995).
[131] M.P. Seah, A system for the intensity calibration of electron spectrometers, J. Electron Spectrosc. Relat.
Phenom. 71 (1995) 191–204.
[132] J. Cazaux, Mechanisms of charging in electron spectroscopy, J. Electron Spectrosc. Relat. Phenom. 105
(1999) 155–185.
[133] D.R. Baer, A.S. Lea, J. Geller, J. Hammon, L. Kover, M.P. Seah, et al., Approaches to analyzing insulators
with Auger electron spectroscopy: update and overview (2009) d.o.i.: 10.1016/j.elspec.2009.03.02.
[134] S. Thevuthasan, W. Jiang, W.J. Weber, Cleaving oxide films using hydrogen implantation, Mater. Lett. 49
(2001) 313–317.
[135] R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, Plenum Press, New York
(1996).
[136] D.B. Williams, C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, Plenum
Press, New York (1996).
[137] E.J. Kirkland, Advanced Computing in Electron Microscopy, Plenum Press, New York (1998).
[138] M. De Graef, Introduction to Conventional Transmission Electron Microscopy, Cambridge University Press,
Cambridge (2003).
[139] B. Fultz, J.M. Howe, Transmission Electron Microscopy and Diffractometry of Materials, Springer, Berlin
(2002).
[140] J.C.H. Spence, High-Resolution Electron Microscopy, Oxford University Press, Oxford (2003).
[141] D.C. Joy, A.D. Romig, J. Goldstein, Principles of Analytical Electron Microscopy, Plenum Press, New York
(1986).
[142] E. Ruska, Uber Fortschritte im Bau und in der Leistung des magnetischen Elektronenmikroskops, Z. Phys. A
87 (1934) 580–602.
[143] S.J. Pennycook, M. Varela, C.J.D. Hetherington, A.I. Kirkland, Materials advances through
aberration-corrected electron microscopy, MRS Bull. 31 (2006) 36–43.
[144] M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban, Electron microscopy image enhanced,
Nature 392 (1998) 768–769.
[145] O. Scherzer, Spharische Und Chromatische Korrektur Von Elektronen-Linsen, Optik 2 (1947) 114–132.
[146] D.J. Smith, Development of aberration-corrected electron microscopy, Microsc. Microanal. 14 (2008) 2–15.
[147] D.A. Muller, L.F. Kourkoutis, M. Murfitt, J.H. Song, H.Y. Hwang, J. Silcox et al., Atomic-scale chemical
imaging of composition and bonding by aberration-corrected microscopy, Science 319 (2008) 1073–1076.
[148] S.A. Chambers, C.M. Wang, S. Thevuthasan, T. Droubay, D.E. McCready, A.S. Lea et al., Epitaxial growth
and properties of MBE-grown ferromagnetic Co-doped TiO
2
anatase films on SrTiO
3
(001) and LaAlO
3
(001), Thin Solid Films 418 (2002) 197–210.
[149] C.M. Wang, S. Azad, V. Shutthanandan, D.E. McCready, C.H.F. Peden, L. Saraf, S. Thevuthasan,
Microstructure of ZrO
2
–CeO
2
hetero-multi-layer films grown on YSZ substrate, Acta Mater. 53 (2005)
1921–1929.
[150] C.M. Wang, S. Thevuthasan, F. Gao, D.E. McCready, S.A. Chambers, The characteristics of interface misfit
dislocations for epitaxial alpha-Fe
2
O
3
on alpha-Al
2
O
3
(0001), Thin Solid Films 414 (2002) 31–38.
[151] C.M. Wang, V. Shutthanandan, S. Thevuthasan, G. Duscher, Direct imaging of quantum antidots in MgO
dispersed with Au nanoclusters, Appl. Phys. Lett. 87 (2005) 153115.
[152] Y.J. Kim, Y. Gao, G.S. Herman, S. Thevuthasan, W. Jiang, D.E. McCready, S.A. Chambers, Growth and
structure of epitaxial CeO
2
by oxygen-plasma-assisted molecular beam epitaxy, J. Vac. Sci. Technol. A 17
(1999) 926–935.